<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>

新聞中心

EEPW首頁(yè) > 醫療電子 > 業(yè)界動(dòng)態(tài) > 芯片造腦:科幻照進(jìn)現實(shí)?

芯片造腦:科幻照進(jìn)現實(shí)?

作者: 時(shí)間:2014-10-07 來(lái)源:果殼 收藏
編者按:人腦的強大功能令科學(xué)家們頂禮膜拜,最近,IBM和高通的“造腦行動(dòng)”研制成功了基于神經(jīng)擬態(tài)技術(shù)的“腦芯片”,初具人工大腦規模。

  人腦那自傲、強大而又神秘無(wú)比的信息處理功能一直令人癡迷。也許是緣于這種癡迷,每當新的技術(shù)出現,它們總會(huì )被用來(lái)進(jìn)行復制大腦的嘗試。雖然在這一過(guò)程中我們收獲了不少新的信息處理工具,但這些“復制品”和真正的大腦依然相差甚遠,這也一次次證明了人類(lèi)對腦的理解還僅處于“兩小兒辯日”的啟蒙階段。

本文引用地址:http://dyxdggzs.com/article/263555.htm

  然而就在最近半年里,“造腦行動(dòng)”又有了新的進(jìn)展:IBM和高通()兩大巨頭先后發(fā)布了基于神經(jīng)擬態(tài)技術(shù)的“腦”。IBM的SyNAPSE號稱(chēng)模擬了一百萬(wàn)個(gè)神經(jīng)元細胞和超過(guò)兩億個(gè)神經(jīng)突觸連接,初具人工大腦的規模。高通公司4月公布的Zeroth也在硅片上高效地模擬了腦神經(jīng)元,裝載了該芯片的機器小車(chē)還能運用“受到人腦啟發(fā)的算法”完成尋路、躲避障礙等任務(wù)。如果幾十年前的人穿越過(guò)來(lái),恐怕會(huì )以為科幻小說(shuō)全面進(jìn)入生活了。

     左:IBM公司于2014年8月推出的SyNAPSE芯片外觀(guān);右:高通Zeroth芯片的宣傳圖

  左:IBM公司于2014年8月推出的SyNAPSE芯片外觀(guān);右:高通Zeroth芯片的宣傳圖

  那么,“仿真腦”的時(shí)代真的要來(lái)臨了嗎?現在下結論似乎還為時(shí)過(guò)早。在對人腦的模擬上,科學(xué)家們還面臨著(zhù)許多困惑和挑戰。下面,就讓我們來(lái)看看“造腦”這個(gè)科幻題目在現實(shí)世界中究竟現狀如何吧。

  “神經(jīng)擬態(tài)”芯片英雄譜

  仿照生命體的神經(jīng)系統的架構來(lái)設計大規模集成電路(VLSI)的硬件電子技術(shù),被稱(chēng)為“神經(jīng)擬態(tài)工程”(Neuromorphicengineering),這門(mén)工程學(xué)開(kāi)創(chuàng )于上世紀80年代。在近40年的發(fā)展中,神經(jīng)擬態(tài)芯片屢有新作,尤其是最近10年,隨著(zhù)IBM、惠普、高通等電子硬件巨頭的加入,神經(jīng)擬態(tài)領(lǐng)域開(kāi)始呈現加速賽跑的熱鬧場(chǎng)面。

  神經(jīng)擬態(tài)的關(guān)鍵在于制造可以產(chǎn)生神經(jīng)電信號的“擬真神經(jīng)元”,要達到這一目的,有兩種途徑可走。第一種是利用硅的半導體特性,直接在硅元件上用積累的電壓來(lái)模擬神經(jīng)元的膜電位,這種方式被稱(chēng)為“模擬式神經(jīng)擬態(tài)”。這種方案是神經(jīng)擬態(tài)工程最經(jīng)典的技術(shù)路線(xiàn),它直接地將神經(jīng)細胞的信號傳導方式轉換到了硅基導體上。用模擬方式制造出來(lái)的“神經(jīng)元”能夠輕松達到和生命體一樣的運算速度,甚至更快。

  另一種模擬途徑是制造一塊類(lèi)似小型電腦的數字芯片,然后在上面運行神經(jīng)元的仿真程序,由仿真程序負責生成類(lèi)似神經(jīng)沖動(dòng)的信號,這種方案被稱(chēng)為“數字式神經(jīng)擬態(tài)”。開(kāi)篇提到的IBM公司的SyNAPSE和高通公司的Zeroth芯片采用的都是數字式的擬態(tài)方案。數字模擬的優(yōu)勢在于可以靈活采用各種不同的神經(jīng)元模型,例如在擬真度要求較高的應用中可以加入神經(jīng)突觸和離子通道的詳細特性,而在速度要求較高的時(shí)候則可以簡(jiǎn)化模型來(lái)保證速度。數字方案雖然仿真速度有所下降,但經(jīng)過(guò)優(yōu)化后也能達到和神經(jīng)元一樣或更快的運算速度,而更高的靈活性也讓它成為了神經(jīng)擬態(tài)技術(shù)的熱門(mén)選項。

  在各種神經(jīng)擬態(tài)芯片中,絕大多數都混合集成了數字和模擬這兩種技術(shù),通過(guò)優(yōu)勢互補使芯片達到更好的性能。

  造腦的巨大挑戰

  現在,已經(jīng)有了相當多的“類(lèi)腦”芯片問(wèn)世,它們看起來(lái)相當“酷炫”,但似乎從未能夠撼動(dòng)傳統計算機芯片的地位。這很大程度上是緣于“造腦”這件任務(wù)所帶來(lái)的巨大挑戰。

  對很多音樂(lè )發(fā)燒友來(lái)說(shuō),“魔聲(Monster)”這個(gè)耳機品牌應該不陌生。創(chuàng )立魔聲品牌的是美國加利福尼亞的華裔工程師李美圣(NoelLee)。李先生年輕時(shí)對于音樂(lè )品質(zhì)的細微挑剔已經(jīng)到了苛刻的地步,以至于在常人所不注意的線(xiàn)材上都發(fā)現了可以提升音質(zhì)的余地。所以魔聲公司一炮走紅的主打產(chǎn)品其實(shí)并不是我們所熟悉的耳機,而是又粗又壯的高端線(xiàn)材(MonsterCable)。魔聲公司在技術(shù)上的歷程引發(fā)了一個(gè)思考:高質(zhì)量的信息處理系統往往需要高質(zhì)量的信號通路,傳輸通路的重要性有時(shí)甚至會(huì )超過(guò)信息的產(chǎn)生和處理本身。

  不幸的是,建立通路在電子信息系統里是比較麻煩也比較昂貴的。如果用電子通路來(lái)模仿一個(gè)有N個(gè)神經(jīng)元的神經(jīng)網(wǎng)絡(luò ),那么所有神經(jīng)元之間兩兩互通就需要N2條通路。如果每條通路都用一條物理連接來(lái)建立,那么模擬的神經(jīng)元數量稍微一多,線(xiàn)路就會(huì )亂作一團亂。目前的半導體芯片技術(shù)基本上還是二維布線(xiàn),所以在一片硅片上能夠允許的線(xiàn)路資源就更加有限。要想用這樣的通路來(lái)實(shí)現人腦式的互聯(lián)互通,幾乎一定會(huì )被物理規律打翻在地。

     數據通路帶來(lái)的災難

  數據通路帶來(lái)的災難

  為了繞開(kāi)物理連接的困境,很多神經(jīng)擬態(tài)芯片采用了“互聯(lián)網(wǎng)式”的方案:先給神經(jīng)元編上“地址”,然后用路由器分發(fā)信息。這種方案雖然避免了紛繁交錯的線(xiàn)路,但它的本質(zhì)是用時(shí)間來(lái)?yè)Q空間,如果不想搭出N2條物理通路,那么就得花N2倍的時(shí)間來(lái)處理路由。隨著(zhù)模擬神經(jīng)元數量的增長(cháng),始終還是繞不過(guò)平方級增長(cháng)的“維度災難”。所以神經(jīng)擬態(tài)芯片成敗的關(guān)鍵往往不是能造出多少個(gè)神經(jīng)元,而是怎么高效處理神經(jīng)元之間的信息交互。IBM公司的SyNAPSE芯片集成了2億5千6百萬(wàn)個(gè)突觸連接,這個(gè)數量級的信息交互已經(jīng)算是相當了不起的成績(jì)。

  造腦之路不僅受制于物理規律,而且在評價(jià)標準上也存在不少爭議。世界各地的研究組在造腦課題上研究得很熱鬧:有的強攻仿真神經(jīng)元和神經(jīng)聯(lián)結的數量,有的專(zhuān)注神經(jīng)元突觸的分子動(dòng)力學(xué)建模,有的則側重大腦的可塑性學(xué)習能力……然而,不客氣地講,不少“造腦”項目多少有點(diǎn)自己樹(shù)靶子自己打的意思。即使這些努力全部宣告成功,可能研制出來(lái)的人工腦也只能在研究者自己劃定的條條框框里做點(diǎn)演示而已,它們的功能依然具有很多局限性。

  造腦目標的困惑

  除了技術(shù)上的困難,制造“仿真腦”的目標也是一個(gè)值得思考的問(wèn)題。除了純粹用于研究以外,“仿真腦”還能為我們做點(diǎn)什么呢?

  當今流行的電子設備和人腦在形態(tài)上沒(méi)有半點(diǎn)相似,在計算原理上也基本不搭界,然而這些電子設備在相當一部分任務(wù)中卻表現得相當出色。這些任務(wù)包括設備控制、大規模批量處理、長(cháng)時(shí)間重復作業(yè)等等。無(wú)論是在自動(dòng)化生產(chǎn)的車(chē)間里,或是運營(yíng)上千臺網(wǎng)絡(luò )計算機的“服務(wù)器農場(chǎng)(serverfarm)”里,甚至在更加新潮的無(wú)人管理的大型倉庫里,那些原來(lái)由“人腦+人肉”完成的任務(wù)現在都已經(jīng)轉交給了機電設備,它們的高效、精確和可靠已經(jīng)達到了令人腦難以企及的高度。

  這些機械化的任務(wù)無(wú)需創(chuàng )造力,而要求操作者務(wù)必精確、不能疲勞,它們簡(jiǎn)直天生就是給機器設計的。而相比之下,探索、學(xué)習和適應環(huán)境才是人腦真正有優(yōu)勢的領(lǐng)域。如果在“仿真腦”問(wèn)世時(shí),人們還是把傳統的機械化任務(wù)交給它們,那么“仿真”恐怕也就失去了意義。

     無(wú)人值守,基于蜂巢智能的現代化倉庫(KivaSystems,LLC.)

  無(wú)人值守,基于蜂巢智能的現代化倉庫(KivaSystems,LLC.)

  學(xué)習創(chuàng )造:“人腦模式”也未必更好

  然而,在學(xué)習和創(chuàng )造領(lǐng)域,模仿“人腦模式”也未必比現有的計算機技術(shù)更有優(yōu)勢。

  隨著(zhù)“大數據”的概念席卷全球,在實(shí)驗室里醞釀多年的機器學(xué)習技術(shù)終于走出實(shí)驗室,走進(jìn)實(shí)際應用。很多原本被認為是“人腦獨霸”的工作,譬如人臉識別、國際象棋、音樂(lè )創(chuàng )作等等,現在也慢慢出現了被電腦代庖的苗頭。而完成這些任務(wù)的電腦,也并沒(méi)有采取人腦的信息處理模式。

  為什么諸如探索、學(xué)習、創(chuàng )造這樣本應由人腦固守的領(lǐng)地也會(huì )被攻破?這要追溯到人腦的一個(gè)底層缺陷——記憶能力不足。

  大腦的基本組分是神經(jīng)元細胞,這種細胞可以組成高效的信息網(wǎng)絡(luò ),但它并不是很好的記憶元件。神經(jīng)元細胞從功能上來(lái)說(shuō)像是一個(gè)傳聲筒,你這頭傳話(huà)進(jìn)去,它在另一頭變個(gè)聲音傳話(huà)出來(lái)。這種類(lèi)似“濾波器”的結構能夠迅速完成一些信號變換,但是卻不適用于長(cháng)期儲存信息。相比之下,電子元件或者磁性元件能夠長(cháng)期保持在“電位高”、“電位低”或者“磁極南”、“磁極北”的狀態(tài),信息一旦寫(xiě)入就很久不會(huì )遺忘。正因為如此,計算機天生就能做到“過(guò)目不忘”,而人腦則要付出很多精力來(lái)鞏固記憶。

  除此以外,電磁元件的狀態(tài)只要通過(guò)簡(jiǎn)單的操作就能在幾微秒內翻轉變換,所以信息不但存得久,而且可以迅速進(jìn)行更改。然而,在神經(jīng)元細胞構成的大腦網(wǎng)絡(luò )中,要想快速改變狀態(tài)就不那么容易了。一種公認的方法是通過(guò)“神經(jīng)可塑性”(neuroplasticity)來(lái)改變神經(jīng)元的活性,但這種機制需要細胞的輸入端和輸出端發(fā)生成千上萬(wàn)次的脈沖耦合,當這些巧合發(fā)生之后才能夠對神經(jīng)突觸的強度有所影響,耗時(shí)也從幾分鐘到幾十年不等。所以從存入信息的速度上來(lái)說(shuō),計算機天生“一目十行”,而人若能如此估計早就上了“最強大腦”。

  像識臉、下棋、作曲這些任務(wù)固然需要學(xué)習、聯(lián)想和創(chuàng )造,但更重要的其實(shí)是積累龐大的信息數據庫作為支持。而由于長(cháng)久記憶和快速固化能力的先天不足,人腦要花超過(guò)電腦很多倍的時(shí)間才能儲備足夠的數據。如果在仿真大腦的研究領(lǐng)域,記憶能力不足的問(wèn)題沒(méi)有得到解決,那么“仿真腦”在這些學(xué)習任務(wù)上也就沒(méi)了優(yōu)勢。

  人腦至今領(lǐng)跑的項目:運動(dòng)控制

  那么在人腦的功能里,究竟有哪些是電子設備至今還難以企及的呢?孤懸于海中的一盞明燈乃是人腦對肢體運動(dòng)的控制。

  人體的運動(dòng)神經(jīng)信號傳輸質(zhì)量其實(shí)遠遠比不上電子設備。人體中的神經(jīng)脈沖信號常年經(jīng)受著(zhù)各種噪聲和擾動(dòng)的影響,如果插管偵聽(tīng)的話(huà)就會(huì )發(fā)現神經(jīng)元脈沖的規則程度經(jīng)常比“收聽(tīng)敵臺”好不了多少。此外,神經(jīng)信號的延遲也十分可觀(guān),神經(jīng)脈沖的傳播速度平均下來(lái)只有幾十米/秒,就算完成一次最簡(jiǎn)單的脊髓反射也需要花費掉30毫秒之巨。而在這30毫秒之內,一個(gè)不算太高端的嵌入式控制器(假定1000Hz采樣率)已經(jīng)完成了30次微調控。

  然而,在這些巨大的劣勢之下,人類(lèi)居然還能完成各種跑跳投捻推揉,行動(dòng)的過(guò)程中還能根據外界環(huán)境的變化實(shí)時(shí)調節動(dòng)作。這些重重挑戰簡(jiǎn)直就是機械疙瘩和硅片腦袋的噩夢(mèng)。

  如果真要用芯片來(lái)制造“仿真腦”,運動(dòng)能力大概會(huì )是一個(gè)不錯的研究方向。而仿真神經(jīng)網(wǎng)絡(luò )能否讓機器人運動(dòng)自如,這還需要更多研究才能下結論。

  造腦的終極走向

  腦神經(jīng)科學(xué)最近40年來(lái)得到了突飛猛進(jìn)的發(fā)展,大腦的神秘面紗已經(jīng)一點(diǎn)點(diǎn)被揭開(kāi)。與此同時(shí),計算機科學(xué)同樣也是兵多將廣,很多傳統概念中“人腦專(zhuān)屬”的功能也在非人腦體系中得以實(shí)現。在腦神經(jīng)科學(xué)和計算機科學(xué)的雙重夾擊下,用電子技術(shù)來(lái)“重造大腦”這個(gè)比較古老也比較另類(lèi)的技術(shù)流派,它的目標需要重新定義,帶來(lái)的意義也必須重新思考。

  從研究角度講,“擬真大腦”應該幫助人類(lèi)揭開(kāi)腦科學(xué)中的謎團。而從實(shí)用技術(shù)角度看,造腦的目的則應該是剝離出人腦真正強勢的功能,制造出超越人腦且超越電腦的新體制智能設備。如前所述,我們對于大腦的熱情膜拜在一項項工程突破面前開(kāi)始降溫,但在肢體運動(dòng)控制這樣的領(lǐng)域,“人腦模式”的表現依然值得期待。

  要想制造出具有人腦般性能的芯片,研究者們還有很長(cháng)的路要走。不過(guò)從另外一個(gè)角度來(lái)看,人們似乎已經(jīng)在無(wú)意之中造出了像人腦一般運行的事物——互聯(lián)網(wǎng)。其實(shí),整個(gè)互聯(lián)網(wǎng)越來(lái)越像是一個(gè)人腦:結點(diǎn)的數量規模也相當龐大;各個(gè)節點(diǎn)之間任意互聯(lián)、高度協(xié)作;網(wǎng)絡(luò )結構根據實(shí)際需求在不斷自我調整;結點(diǎn)之間完全獨立并發(fā)、互相協(xié)調但互不隸屬。2012年全球估計接入互聯(lián)網(wǎng)的電腦數量是10億左右,雖然和大腦的幾百億神經(jīng)元還有差距,但也算是初具“神經(jīng)網(wǎng)絡(luò )”的規模。我們在這里為了芯片造腦而絞盡腦汁的時(shí)候,整個(gè)人類(lèi)說(shuō)不定已經(jīng)自組織成了另一個(gè)尺度上的“大腦”呢。

pic相關(guān)文章:pic是什么


路由器相關(guān)文章:路由器工作原理


路由器相關(guān)文章:路由器工作原理


離子色譜儀相關(guān)文章:離子色譜儀原理


關(guān)鍵詞: Qualcomm 芯片

評論


相關(guān)推薦

技術(shù)專(zhuān)區

關(guān)閉
国产精品自在自线亚洲|国产精品无圣光一区二区|国产日产欧洲无码视频|久久久一本精品99久久K精品66|欧美人与动牲交片免费播放
<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>