DRAM核心設計的新舊存取技術(shù)差異
本文討論不同的存取技術(shù)對于DRAM在進(jìn)行實(shí)體設計時(shí)所發(fā)生的改變,尤其是指由1電晶體+1電容器組成的儲存單元——DRAM的最小記憶單位…
本文引用地址:http://dyxdggzs.com/article/201711/371352.htm不同的存取技術(shù)對于動(dòng)態(tài)隨機存取存儲器(DRAM)在進(jìn)行實(shí)體設計時(shí)將發(fā)生什么改變?當動(dòng)態(tài)隨機存取存儲器(DRAM)中的儲存單元(storage cell)加上控制端點(diǎn)以及數據端點(diǎn)后,就被稱(chēng)為1T1C DRAM單元;其中,控制端點(diǎn)也就是字組線(xiàn)(WL),用于傳遞位址訊號,數據端點(diǎn)也就是位元線(xiàn)(BL),用于傳遞數據值。
陣列結構的差異
長(cháng)期以來(lái),對于DRAM單元陣列之中的位元線(xiàn)是使用差動(dòng)對(differential pair)的樣式來(lái)配置,于是位元線(xiàn)就被區分成“+BL”以及“-BL”;本文將這樣的陣列結構命名為差動(dòng)式儲存陣列(Differential Storage Array),包含這種陣列結構的DRAM芯片就名為差動(dòng)式DRAM芯片。相對于差動(dòng)式儲存陣列,新的存取技術(shù)可使用單端的樣式來(lái)配置,于是位元線(xiàn)就是“BL”;本文將這樣的陣列結構命名為單端式儲存陣列,包含這種陣列結構的DRAM芯片就名為單端式DRAM芯片。
在圖1左上方呈現儲存單元的電路圖,這就是1T1C DRAM芯片的記憶單位。在圖1中,為了清楚比較差動(dòng)式儲存陣列與單端式儲存陣列之間的差異,特別將上半部繪制成差動(dòng)式儲存陣列,又將下半部繪制成單端式儲存陣列。這樣本是將位址空間設定為4,其中,連接定址電路的導線(xiàn)即是WL0至WL3。連接數據傳輸電路的導線(xiàn)對于差動(dòng)式儲存陣列的設計是BL00 (+BL)以及BL10 (-BL),它的數據寬度是2,并且必為偶數,但是單端式儲存陣列就止于BL0,它的數據寬度是1,可為奇數。差動(dòng)式儲存陣列有復雜的導線(xiàn)連接方式,并且必須交錯連接位址線(xiàn),這又被稱(chēng)為奇偶連線(xiàn),像那BL00就是配合WL0以及WL2來(lái)存取數據。
從圖 1可清楚看出單端式儲存陣列相對于差動(dòng)式儲存陣列的優(yōu)勢,那就是簡(jiǎn)單俐落地連接全部的導線(xiàn),這在布局的時(shí)候可減輕繞線(xiàn)的工作量以及簡(jiǎn)化儲存單元的排列;在實(shí)體電路中可去除差動(dòng)對的電壓互相影響另一相對的儲存單元,也就是在進(jìn)行存取時(shí)會(huì )互相影響那些在儲存單元之內的電壓值,這原因歸于電晶體的泄漏電流。

圖1:差動(dòng)式儲存陣列與單端式儲存陣列的差異
規格設計的差異
在規格設計上,DRAM芯片會(huì )配置許多儲存陣列,本文將這些儲存陣列所形成的布局區域命名為存儲器陣列,并且這一存儲器陣列又可分割出許多存儲器區塊,還可聚集這些存儲器區塊成一區塊簇(Block Cluster)。關(guān)于本文所提出的DRAM芯片是以圖2來(lái)呈現它的內部架構,這些存儲器區塊配置相同的定址空間,簡(jiǎn)稱(chēng)區塊空間,這一區塊空間包含多個(gè)與數據寬度相等的單端式儲存陣列,或是包含多個(gè)與半數數據寬度相等的差動(dòng)式儲存陣列。在圖中有標記保持單元(Hold Cell)以及更新單元(Refresh Cell),這需要分別配合主動(dòng)保持(Active Hold)以及主動(dòng)更新(Active Refresh)的功能。在存儲器區塊之內包含更新控制器以及列解碼器即可經(jīng)由平行技術(shù)來(lái)執行局部更新作業(yè)。
有許多因素可決定區塊空間(Sblock),像是執行更新作業(yè)的時(shí)脈頻率、等待更新作業(yè)完成的時(shí)間、執行更新作業(yè)的間隔時(shí)間以及執行存取作業(yè)的時(shí)間;以上這些因素分別簡(jiǎn)稱(chēng)為更新時(shí)脈頻率(fCrefresh)、等待時(shí)間(t_wait)、更新時(shí)間(t_refresh)以及存取時(shí)間(t_access)。區塊空間與數據寬度(W_data)的乘積就是存儲器區塊所含有的位元數,名為區塊容量(C_block)。這些因素之間的關(guān)系可由以下的數學(xué)方程式來(lái)表達,并隨附范例在后:


圖2:DRAM芯片內部架構
實(shí)體結構的差異
在實(shí)體結構中,單一儲存陣列上連接所有儲存單元的單一位元線(xiàn),該金屬導線(xiàn)的長(cháng)度以及寄生電容會(huì )限制區塊空間的最大值,這要從儲存陣列的布局以及儲存單元的特性來(lái)分析這些因素。圖3呈現有一實(shí)體結構來(lái)示意金屬導線(xiàn)在晶粒上的布局,其中,側視圖呈現差動(dòng)式儲存陣列將那些與+BL以及-BL連接的金屬導線(xiàn)放置在比較下面的金屬層,像是第一金屬層,在圖中以粗點(diǎn)線(xiàn)示意;單端式儲存陣列反而將那些與BL連接的金屬導線(xiàn)放置在比較上面的金屬層,像是第三金屬層,在圖中以細實(shí)線(xiàn)示意。頂視圖呈現差動(dòng)式儲存陣列會(huì )加寬金屬導線(xiàn)來(lái)增加寄生電容;單端式儲存陣列反而要使用最小的線(xiàn)寬來(lái)去除寄生電容。
以下請對照圖3,當WL0或WL1使得電晶體導通之后,與其連接的電容器就會(huì )向BL或+BL或-BL放電,位元線(xiàn)的電流經(jīng)過(guò)一段金屬導線(xiàn)之后連接至數據驅動(dòng)器以及數據接收器。那些寄生在金屬導線(xiàn)的全部電容在圖中被標記為“C_BL”,這電容量也關(guān)聯(lián)于實(shí)現回寫(xiě)功能的硬體電路;圖中有一測試點(diǎn)(TP)用于探測儲存單元的儲存狀態(tài),它的電壓值即是儲存電壓(V_storage)。當測試點(diǎn)的電荷逐漸移至金屬導線(xiàn)之時(shí),測試點(diǎn)的電壓也會(huì )逐漸下降,除此之外,那些與位元線(xiàn)連接的電晶體皆有泄漏電流,甚至是數據驅動(dòng)器的輸出端,因此,那些移至金屬導線(xiàn)的電荷又會(huì )被帶走。如果提高C_BL的電容量就能夠減緩電荷從金屬導線(xiàn)被帶走的速度,然而,金屬導線(xiàn)需要從測試點(diǎn)取得更多的電荷來(lái)累積足夠的電壓值,如此才能判斷數據值,此外會(huì )增加預充電的時(shí)間;這一現象會(huì )增加讀取作業(yè)的時(shí)間以及回寫(xiě)作業(yè)的時(shí)間。如果C_BL的電容量能夠趨近于零即可縮短預充電的時(shí)間,但是那些移至金屬導線(xiàn)的電荷就會(huì )迅速流失,并且測試點(diǎn)的電壓值也會(huì )迅速歸零;這一現象如同發(fā)生了突波而導致數據接收器不能判斷數據值,然而,這有可能經(jīng)由增強數據接收器的整體效能而解決。這一寄生電容對于差動(dòng)式儲存陣列而言是需要足夠大的電容量來(lái)判斷數據值,對于單端式儲存陣列反而期望得到最小的電容量,否則不止需要更長(cháng)的回寫(xiě)時(shí)間來(lái)恢復儲存狀態(tài),也有可能需要更大的電容量來(lái)維持正在讀取之時(shí)的數據值,甚至無(wú)法判斷數據值。
區塊空間的最大值正比于數據接收器的整體效能,正比于那在儲存單元內部的電容量(C_storage),反比于金屬導線(xiàn)的寄生電容,反比于金屬導線(xiàn)的總阻抗值,反比于電流路徑之中的動(dòng)態(tài)總泄漏電流(i_DTLC),這涵意即是每當有一儲存陣列正在存取之時(shí)就會(huì )根據各儲存單元的儲存電壓值而動(dòng)態(tài)地變化。經(jīng)由電容器的電荷分壓定律而能算出正在讀取數據之時(shí)那在位元線(xiàn)上的電壓值,亦即“V_BL(@reading)”,數學(xué)方程式如后,其中,“V_BL(@reading)”是那在位元線(xiàn)上的差異電壓值,“V_precharge”是預充電的電壓值,這電壓值在差動(dòng)式儲存陣列是1/2V_dd,在單端式儲存陣列是0:


圖3:內含2種儲存單元的實(shí)體結構差異
儲存電壓的差異
在進(jìn)入這段的主題之前要先清楚定義以下的名詞:“電源電壓(V_dd)”是位于儲存單元之外的供應電壓,也就是向著(zhù)數字邏輯電路而供應正電壓的電源;“儲存電壓(V_storage)”是位于儲存單元之內用于接收電壓值并且盡量維持其所對應的邏輯準位來(lái)提供讀取期間的數據值;“鑒別電壓(V_discerning)”是數據接收器在讀取期間或更新期間能夠對最微小的電壓變化而鑒別數據值的極限值;“最小雜訊邊界(V_margin〡MIN)”是數據接收器在讀取期間或更新期間內受到各類(lèi)雜訊的干擾時(shí)也能夠鑒別數據值的最小邊界電壓值,這些雜訊包含電源雜訊以及切換雜訊;“最小差異電壓(ΔV〡MIN))”等于鑒別電壓加上最小雜訊邊界,是在讀取期間或更新期間能夠在受到雜訊干擾之時(shí)也能被數據接收器鑒別數據值的最小儲存電壓,這電壓也會(huì )影響更新時(shí)間的極限值。另外,“單元電壓(V_cell)”是筆者發(fā)表有關(guān)SRAM的存取技術(shù)時(shí)所提出的一種供應電壓,這用途不同于儲存電壓。
圖4呈現差動(dòng)式儲存陣列以及單端式儲存陣列的儲存電壓,并且突顯在單一儲存單元之中的差異。為了忽略不同的儲存陣列在存取技術(shù)上的差異,所以這電壓波形圖所對應到的硬體電路就是單一儲存單元。換言之,這是設定在相同的制程參數、電容量以及泄漏電流來(lái)比較關(guān)于儲存電壓的差異。
電晶體的閘極電壓(V_t)會(huì )使得儲存電壓低于電源電壓,如果逐漸增加電晶體的閘極電壓則可使得儲存電壓逐漸趨近電源電壓。差動(dòng)式儲存陣列為了去除閘極電壓,于是在存取期間之內會(huì )令字組線(xiàn)的電壓值至少到達電源電壓加上閘極電壓,使得最大的儲存電壓等于電源電壓。單端式儲存陣列除了可經(jīng)由上述的增壓方法來(lái)達到同樣的效果之外,尚可經(jīng)由多閘極電壓的制程技術(shù)來(lái)使用高閘極電壓的電晶體,如此還能減小泄漏電流。對于減小泄漏電流的電路也能使用三阱制程(triple-well process)來(lái)設計列解碼器的輸出驅動(dòng)器,如此即可令字組線(xiàn)以負電壓截止電晶體。
圖4的電壓波形圖是呈現去除閘極電壓的影響而形成的工作狀態(tài)。在寫(xiě)入期間之內,差動(dòng)式儲存陣列的儲存電壓會(huì )先到達預充電的電壓值,然后到達所被寫(xiě)入的電壓值;然而,單端式儲存陣列沒(méi)有預充電的電壓值。在保持期間之內,差動(dòng)式儲存陣列的儲存電壓會(huì )逐漸趨近半倍的電源電壓值;然而,單端式儲存陣列是逐漸趨近最小的電壓值,亦即接地電壓值。由此看出單端式儲存陣列的更新時(shí)間大約是差動(dòng)式儲存陣列的二倍。
圖5是為了突顯差動(dòng)式儲存陣列與單端式儲存陣列之間的效益差異,所以這電壓波形圖呈現加入閘極電壓所形成的影響。在寫(xiě)入期間之內,最大的儲存電壓值低于電源電壓值,這影響了差動(dòng)式儲存陣列的電壓對稱(chēng)性。在保持期間之內,對于差動(dòng)式儲存陣列的儲存電壓,放電曲線(xiàn)比充電曲線(xiàn)更快到達半倍的電源電壓值,使得更新時(shí)間被迫縮短。由此看出單端式儲存陣列的更新時(shí)間超過(guò)差動(dòng)式儲存陣列的二倍。
經(jīng)由上述的分析而得知一些會(huì )影響時(shí)間的因素,其中,泄漏電流是主要因素,并且正比于工作溫度。關(guān)于在差動(dòng)式儲存陣列內部單一單元的泄漏時(shí)間(tDleakage)以及在單端式儲存陣列內部單一單元的泄漏時(shí)間(tSleakage)可由以下的數學(xué)方程式來(lái)表達,其中,“t_zeroing”代表單端式儲存單元在每次對儲存電壓執行歸零的時(shí)間,亦即啟動(dòng)主動(dòng)保持功能的時(shí)間:

由于每當有一儲存陣列正在存取之時(shí)就會(huì )影響內部各儲存單元的更新時(shí)間,所以其余儲存單元受到這一存取作業(yè)而被縮短了更新時(shí)間就名為收縮時(shí)間。差動(dòng)式儲存陣列的收縮時(shí)間(σtDshrink)以及單端式儲存陣列的收縮時(shí)間(σtSshrink)可由以下的數學(xué)方程式來(lái)表達,其中,“t_precharge”代表預充電時(shí)間,“t_rdvwr”代表讀取或寫(xiě)入時(shí)間,“t_rewrite”代表回寫(xiě)時(shí)間:

關(guān)于各種儲存陣列在工作中的動(dòng)態(tài)更新時(shí)間(σt_refresh@working)可由以下的數學(xué)方程式來(lái)表達,并且動(dòng)態(tài)更新時(shí)間不同于設計上的更新時(shí)間,其中,“T_access”代表執行存取作業(yè)的次數:


圖4:儲存單元(不帶Vt)的儲存電壓比較

圖5:儲存單元(帶Vt)的儲存電壓比較
結論
差動(dòng)式儲存陣列的存取電路很容易經(jīng)由習以為知的電路來(lái)實(shí)現,然而,單端式儲存陣列的存取特性對于數據接收器的設計是一重大的考驗,由此可推知1T1C DRAM單元在出現以來(lái)就是使用差動(dòng)放大器來(lái)讀取數據。本文對于DRAM存取技術(shù)的改變而形成了這種單端式儲存陣列,乃是基于由三電晶體結合另一電阻器所組成的SRAM單元。簡(jiǎn)言之,靜態(tài)減量技術(shù)成,動(dòng)態(tài)存取特性同。在標準的CMOS制程技術(shù)下,當SRAM單元的電晶體數量減少至三顆的時(shí)候就少了些原有的特性,尤其是存取特性的迵異,并且類(lèi)似于DRAM單元。
評論