新穎的均流IC 可輕松平衡兩個(gè)電源
“只許成功,不許失敗”—— 對于當今那些始終保持正常運轉的電氣基礎設施 (電信網(wǎng)絡(luò )、互聯(lián)網(wǎng)和電網(wǎng)等) 的設計師而言,這很可能是他們的座右銘。問(wèn)題是,此類(lèi)基礎設施的構件 (從不起眼的電容器到高度智能化的刀片服務(wù)器) 其使用壽命都是有限的,而且它們的壽命終止常常會(huì )出現在您最擔心、最不愿意的時(shí)刻。針對停機問(wèn)題的常用解決方案是采用冗余結構,這是指在某個(gè)關(guān)鍵組件發(fā)生故障時(shí)隨時(shí)可以接管并生效的后備系統。
本文引用地址:http://dyxdggzs.com/article/176014.htm例如:交付給用戶(hù)的高可用性計算機服務(wù)器通常配有兩個(gè)相似的 DC電源,用于給每塊專(zhuān)用電路板饋電。每個(gè)電源能獨自承擔整個(gè)負載的供電,而且兩個(gè)電源通過(guò)電源二極管連接在一起實(shí)現二極管“或”,以構成單個(gè) 1 + 1 冗余電源。就是說(shuō),由電壓較高的那個(gè)電源向負載輸送功率,而另一個(gè)電源則處于待用狀態(tài)。假如那個(gè)工作電源的電壓由于故障或移除的原因而下降或消失,則曾經(jīng)是具有較低電壓的電源變成了較高電壓電源,于是由它接管為負載供電的工作。二極管負責避免反向饋電及兩個(gè)電源之間的交叉傳導,同時(shí)保護系統免遭電源故障的損壞。
二極管“或”是一種簡(jiǎn)單的“贏(yíng)家通吃”之系統,這里由電壓最高的電源提供全部的負載電流。電壓較低的電源則處于空閑狀態(tài),直到被調用為止。雖然易于實(shí)現,但 1 + 1 解決方案效率欠佳,有可能被更好地用于改善總體工作效率及壽命的資源給白白浪費掉了。由所有電源共同均分負載的供電效果要好得多,其優(yōu)勢如下:
l 如果各承擔一半的負載,那么電源的壽命會(huì )有所延長(cháng),并有利于散播電源熱量和減小電源組件上承受的熱應力。電子產(chǎn)品關(guān)于壽命有這樣一條經(jīng)驗法則:溫度每下降 10°C,組件的故障率將減半。這對于提升可靠性是一項重大利好。
l 由于較低電壓電源始終處于可供使用的狀態(tài),因此當切換至備用電源時(shí)卻發(fā)現其早已悄無(wú)聲息地發(fā)生了故障 (這在簡(jiǎn)單的二極管“或”系統中是有可能出現的),這種情況并不令人感到意外。
l 在負載均分系統中,可以并聯(lián)多個(gè)現有的小電源以構成一個(gè)較大的電源。
l 發(fā)生電源故障時(shí)的恢復動(dòng)態(tài)特性更加平穩快速,因為電源變化屬于“較多和較少”,而并非“關(guān)斷和接通”。
l 由兩個(gè)以一半容量運行的電源構成的 DC/DC 轉換器比采用單個(gè)以接近滿(mǎn)容量運行的電源具有更好的總體轉換效率。
均流的方法
把多個(gè)電源的輸出連接起來(lái)可使其均分一個(gè)公共負載電流。多個(gè)電源之間的負載電流分配取決于個(gè)別電源的輸出電壓以及至共同負載的電源通路電阻。這被稱(chēng)為“壓降均分”(droop sharing)。為了避免電源反向饋電并使系統與故障電源相隔離,可以采取與每個(gè)電源串聯(lián)的方式插入二極管。當然,這個(gè)增加的二極管電壓降會(huì )對負載均分的平衡產(chǎn)生影響。
壓降均分雖然簡(jiǎn)單,但均分準確度的控制欠佳,而且串聯(lián)二極管將產(chǎn)生電壓和功率損耗。一種可控性更好的均流方式是監視電源電流,將之與每個(gè)電源需要提供的平均電流進(jìn)行比較,然后調節電源電壓 (通過(guò)其微調引腳或反饋網(wǎng)絡(luò )),直到電源電流與要求值相匹配為止。這種方法需要布設至每個(gè)電源的導線(xiàn) (一根共享總線(xiàn)),以指示每個(gè)電源需要貢獻的電流。均流環(huán)路補償采用定制的設計方式,以適應電源環(huán)路動(dòng)態(tài)特性。受控均流要求進(jìn)行謹慎的設計,并可使用所有的電源 (在某些系統中這是不可能的)。
本文介紹了一種新穎的均流方法,其可實(shí)現個(gè)別電源貢獻電流的主動(dòng)控制,但同時(shí)具有壓降均分的簡(jiǎn)單性。在該系統中,用可調二極管替代了一般的二極管,這種二極管具有可通過(guò)調節以實(shí)現平衡均流的接通電壓。此方法可獲得優(yōu)于壓降均分的均分準確度,而且可調二極管用于實(shí)現均流所需消耗的功率極少,遠遠低于傳統二極管的功率損耗。由于不需要共享總線(xiàn),因此其可實(shí)現較簡(jiǎn)單和獨立于電源的補償和便攜式設計。對于那些難以使用或無(wú)法使用其微調引腳和反饋網(wǎng)絡(luò )的電源而言,這種方法是理想的選擇。
均流控制器
LTC4370 運用了凌力爾特專(zhuān)有的可調二極管均流方法。該器件采用充當可調二極管的外部 N 溝道 MOSFET 實(shí)現了兩個(gè)電源之間的負載平衡,這些二極管的接通電壓可以調節,從而實(shí)現平衡均流。圖 1 示出了 LTC4370 在兩個(gè) 12V 電源之間均分一個(gè) 10A 負載的情形。
圖 1:LTC4370 在兩個(gè)二極管“或”12V 電源之間平衡一個(gè) 10A 負載電流。均流通過(guò)調節 MOSFET 電壓降以補償電源電壓的失配來(lái)實(shí)現
圖 2 示出了影響負載均分的器件內部組件。誤差放大器 EA 負責監視 OUT1 和 OUT2 引腳之間的差分電壓。它設定兩個(gè)伺服放大器 (SA1 和 SA2,每個(gè)電源采用一個(gè)) 的正向調節電壓 VFR。伺服放大器調節外部 MOSFET 的柵極 (因而包括其電阻) 以使 MOSFET 兩端的正向壓降等于正向調節電壓。誤差放大器將較低電壓電源上的 VFR 設定為 25mV 的最小值。較高電壓電源上的伺服被設定為 “25mV + 兩個(gè)電源電壓的差”。這樣,兩個(gè) OUT 引腳電壓實(shí)現了均等。OUT1 = OUT2 意味著(zhù) I1 • R1 = I2 • R2。于是,倘若 R1 = R2 則 I1 = I2??梢圆捎脤θ≈挡煌臋z測電阻器進(jìn)行簡(jiǎn)單的調整以形成“比例式”均流,即:I1 / I2 = R2 / R1。請注意,負載電壓跟蹤低于最低電源電壓 25mV。
圖 2:LTC4370 中與負載均分相關(guān)的內部組件
MOSFET 與伺服放大器一道起一個(gè)二極管的作用,此二極管的接通電壓為正向調節電壓。MOSFET 在其正向壓降下降至低于調節電壓時(shí)被關(guān)斷。當 MOSFET 電流增加時(shí),柵極電壓上升以減小導通電阻,從而把正向壓降保持在 VFR。這會(huì )發(fā)生在柵極電壓高出電源電壓達 12V 之前。電流的進(jìn)一步上升將導致 MOSFET 兩端的壓降以 IFET • RDS(ON) 線(xiàn)性增加。
鑒于上述情況,當誤差放大器設定了伺服放大器的正向調節電壓時(shí),其在功能上等同于調節 (基于 MOSFET 的) 二極管的接通電壓。調節范圍從 25mV 的最小值至由 RANGE 引腳設定的最大值 (見(jiàn)下文中的“設計考慮”)。
控制器能實(shí)現 0V 至 18V 電源的負載均分。當兩個(gè)電源均低于 2.9V 時(shí),需要在 VCC 引腳上連接一個(gè) 2.9V 至 6V 的外部電源,以為 LTC4370 供電。當出現反向電流時(shí),MOSFET 的柵極將在 1μs 之內關(guān)斷。對于一個(gè)大的正向壓降,柵極也將在不到 1μs 的時(shí)間里接通??焖俳油?(這一點(diǎn)對于低電壓電源很重要) 是利用集成型充電泵輸出端上的一個(gè)儲能電容器實(shí)現的。該電容器在器件上電時(shí)儲存電荷,并在快速接通過(guò)程中輸送 1.4A 的柵極上拉電流。
/EN1 和 /EN2 引腳可用于關(guān)斷其各自的 MOSFET。需注意,電流仍會(huì )流過(guò) MOSFET 的體二極管。當兩個(gè)通道均關(guān)斷時(shí),器件的電流消耗減低至每個(gè)電源 80μA。FETON 輸出負責指示各自的 MOSFET 是處于導通還是關(guān)斷狀態(tài)。
評論