基于LCC拓撲的2相輸入300W AC-DC LED電源
近年來(lái),諧振變換器的熱度越來(lái)越高,被廣泛用于計算機服務(wù)器、電信設備、燈具和消費電子等各種應用場(chǎng)景。諧振變換器可以很容易地實(shí)現高能效,其固有的較寬的軟開(kāi)關(guān)范圍很容易實(shí)現高頻開(kāi)關(guān),這是一個(gè)關(guān)鍵的吸引人的特性。本文著(zhù)重介紹一個(gè)以半橋LCC諧振變換數字控制和同步整流為特性的300W電源。
本文引用地址:http://dyxdggzs.com/article/202103/423266.htm圖1所示的STEVAL-LLL009V1是一個(gè)數控300W電源。原邊組件包括PFC級和DC-DC功率級(半橋LCC諧振變換器),副邊組件包括同步整流電路和STM32F334微控制器,其中STM32F334微控制器對DC-DC功率級(半橋LCC諧振變換器)和輸出同步整流進(jìn)行數字控制,而功率因數校正(PFC)級基于L6562ATD臨界模式PFC控制器。
評估套件的工作模式可以按照需要設為恒定電壓(CV)模式或恒定電流(CC)。 板載快速保護電路提供所有的必備的保護功能,并且具有很高的可靠性。在270-480V交流輸入和整個(gè)負載范圍內,對評估套件進(jìn)行了性能測評,試驗結果證明,電能質(zhì)量參數在IEC 61000-3-2通用交流電源諧波標準的可接受范圍內。
前言
本文提出的解決方案采用數字變換控制方法,而不是基于模擬IC的標準設計。數控方法的主要優(yōu)點(diǎn)是設置靈活,可以在任何給定條件下即時(shí)調整參數和工作點(diǎn),無(wú)需更改任何硬件,而模擬控制只能在特定范圍內調整。數字控制方法只用一顆芯片就能實(shí)現調光方法(模擬或數字)、調光控制(0-10V,無(wú)線(xiàn)通信)、調光分辨率、溫度監控、各種保護、通信連接等高級功能,因而系統成本更劃算,實(shí)現起來(lái)也比模擬方法更容易。此外,在噪聲較高的工況下,數控方法可保證電源具有更高的穩定性:數控電源不易受元器件公差、溫度變化、電壓漂移等因素的影響。
圖1 STEVAL-LLL009V1評估套件
系統概述
STEVAL-LLL009V1評估套件有恒定電壓(CV)和恒定電流(CC)兩種模式,恒壓模式(CV)可將270V-480V交流電輸入轉為48 V恒定電壓、最大電流6.25 A的直流電輸出;恒流模式(CC)可以輸出36V-48V的6.25 A直流電流。通過(guò)撥動(dòng)主電源板上的開(kāi)關(guān)SW1,可以將評估套件設為CV模式或CC模式。
DC-DC功率級叫做原邊電源層,而微控制器級叫做副邊電源層,微控制器向電隔離半橋柵極驅動(dòng)器STGAP2DM發(fā)送控制信號,驅動(dòng)DC-DC功率級MOSFET開(kāi)關(guān)管。
圖2是STEVAL-LLL009V1評估套件的框圖,該評估套件嵌入了原副邊需要的拓撲電路和元器件。
評估板提供一個(gè)0-10V的輸入,用于控制LED的亮度。僅當評估套件在恒流(CC)模式下運行時(shí),調光控制0-10V輸入才適用。 STEVAL-LLL009V1評估套件實(shí)現了模擬調光方法,電流分辨率為1%。
評估板上還插接了一個(gè)有隔離放大器的子板,用于檢測PFC的輸出電壓,該輸出電壓也是DC-DC功率級的輸入電壓。
PFC級基于MDmeshTM K5功率MOSFET;為實(shí)現高能效,LCC變換器的半橋采用MDmeshTM DK5功率MOSFET。副邊同步整流(SR)電路采用STripFETTM F7功率MOSFET,以減少通態(tài)損耗。
評估套件配備了完善的安全保護功能,例如,開(kāi)路保護、短路保護、諧振電流保護、DC-DC功率級輸入欠壓保護和過(guò)壓保護。
基于VIPer267KDTR的離線(xiàn)反激變換器向原副邊電路供電,包括控制板、柵極驅動(dòng)器IC和信號調理電路。
實(shí)驗結果表明,在寬輸入電壓和寬負載條件下,評估板取得了較高的電源能效,功率因數接近一,較低的THD%失真率,這歸功于意法半導體的功率器件的出色性能,以及使用STM32F334 32位微控制器實(shí)現的控制策略。
圖2 STEVAL-LLL009V1評估套件框圖
諧振變換器
DC-DC功率級將PFC輸出電壓變?yōu)樗璧妮敵鲭妷骸?DC-DC功率變換級有多種拓撲可用,例如,LLC諧振變換器。每種拓撲都有其各自的優(yōu)缺點(diǎn)。充電器和LED照明之類(lèi)的應用可能要求電隔離的DC-DC功率級處理較寬的輸入或輸出電壓。 考慮到這些要求,在STEVAL-LLL009V1的DC-DC功率級中實(shí)現了半橋LCC諧振拓撲,如圖3所示。
圖3 具有同步整流功能的半橋LCC諧振變換級
在STEVAL-LLL009V1中,并聯(lián)電容器Cp連接到變壓器的副邊,因此,同步整流的寄生電容和變壓器的漏感成為諧振回路的一部分。
PFC輸出電壓為大容量的Bulk電容器充電,以生成穩定的DC-BUS電流。 半橋配置MOSFET開(kāi)關(guān)在GND和DC-BUS之間產(chǎn)生一個(gè)方波電壓波形, 并施加到由電容器Cr、電容器Cp(位于副邊)、電感器Lr和隔離變壓器組成的LCC諧振回路。
以50%的PWM占空比和適當的死區時(shí)間驅動(dòng)LCC諧振變換器的半橋高壓MOSFET 開(kāi)關(guān)。因為近似正弦諧振的儲能電流始終滯后于電壓波形(電感區域),所以MOSFET輸出電容在下一次導通之前的死區時(shí)間內有時(shí)間放電,并實(shí)現零電壓開(kāi)關(guān)(ZVS)操作,如圖4所示。PWM開(kāi)關(guān)頻率控制器用于調節諧振回路的電壓升高幅度,并將變換器的電壓保持在電感區域內,使開(kāi)關(guān)管在整個(gè)工作范圍內保持ZVS操作,并減少開(kāi)關(guān)損耗。
圖4 在100%負載時(shí)HB-LCC級波形
表1 LCC與LLC諧振變換器對比
諧振變換器 | LCC變換器 | LLC 變換器 | |
fr1 | |||
fr2 | |||
理想開(kāi)關(guān)區域 | foperation > fr2 | fr1 < foperation < fr2 | |
主要特性 | LCC 頻率波動(dòng)小,在低負載工況下,可能不需要Burst Mode跳周期模式 | LLC 的RMS 電流比LCC小 LLC的能效比 LCC高 | |
框圖 | ![]() | ![]() |
我們用基本諧波分析(FHA)法分析了評估套件半橋LCC諧振變換器的增益。
根據使用FHA方法得出的增益計算公式以及為STEVAL-LLL009V1評估套件半橋LCC諧振轉換器選擇的LCC參數,我們得出增益與歸一化頻率的關(guān)系曲線(xiàn),如圖5所示。
圖5 HB LCC變換器-增益與歸一化頻率
評論