<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>

新聞中心

EEPW首頁(yè) > 業(yè)界動(dòng)態(tài) > 同樣是做AI芯片,走的路又有什么不同?

同樣是做AI芯片,走的路又有什么不同?

作者: 時(shí)間:2017-02-15 來(lái)源:財經(jīng)網(wǎng) 收藏
編者按:在芯片這個(gè)地方,它是每隔一段就會(huì )換一個(gè)應用方向,90年代時(shí)候最火的是多媒體電腦,也就是PC端,后來(lái)就變到了移動(dòng)端,最近則是人工智能,核心專(zhuān)用芯片是人工智能時(shí)代的戰略制高點(diǎn),在這個(gè)領(lǐng)域NV/Google/Intel/AMD在A(yíng)I芯片的都有不同戰略,誰(shuí)能笑到最后?出現黑馬的幾率有多大?

  一、行業(yè)的演進(jìn)路線(xiàn)

本文引用地址:http://dyxdggzs.com/article/201702/344005.htm

  行業(yè)的整體發(fā)展始自上世紀60年代,一開(kāi)始是指數型發(fā)展,所以有了每18個(gè)月集成度翻一番的摩爾定律,可以說(shuō)當時(shí)的發(fā)展是非??斓?。摩爾定律背后的邏輯是說(shuō),隨著(zhù)工藝制程的進(jìn)化,同一款的制造成本會(huì )更低,單位面積晶體管數量提升導致相同的芯片所需要的面積縮小;而如果工藝制程發(fā)展速度過(guò)慢,則意味著(zhù)芯片制作成本居高不下,導致利潤無(wú)法擴大。但是,如果孤注一擲把所有的資本都用來(lái)發(fā)展新制程,則風(fēng)險太大,一旦研發(fā)失敗公司就完蛋了。

  摩爾發(fā)現當時(shí)市場(chǎng)上成功的半導體廠(chǎng)商的制程進(jìn)化速度大約是每年半導體芯片上集成的晶體管數量翻倍,于是寫(xiě)了著(zhù)名的論文告訴大家這個(gè)發(fā)展速度是成本與風(fēng)險之間一個(gè)良好的折中,半導體業(yè)以后發(fā)展可以按照這個(gè)速度來(lái)。

  可以說(shuō),摩爾定律背后的終極推動(dòng)力其實(shí)是經(jīng)濟因素,它給市場(chǎng)帶來(lái)的積極影響是,隨著(zhù)半導體工藝制程的進(jìn)化,芯片的性能以指數級增長(cháng),從而帶動(dòng)了電子產(chǎn)品性能大躍進(jìn)式發(fā)展,電子市場(chǎng)一片生機勃勃。在摩爾定律提出的前三十年,新工藝制程的研發(fā)并不困難,但隨著(zhù)晶體管越來(lái)越小,越來(lái)越接近宏觀(guān)物理和量子物理的邊界,高級工藝制程的研發(fā)越來(lái)越困難,研發(fā)成本也越來(lái)越高。如果工藝制程繼續按照摩爾定律所說(shuō)的以指數級的速度縮小特征尺寸,會(huì )遇到兩個(gè)阻礙,一個(gè)是經(jīng)濟學(xué)阻礙,另一個(gè)是物理學(xué)阻礙。

  經(jīng)濟學(xué)阻礙是,隨著(zhù)特征尺寸的縮小,芯片的成本上升很快。這個(gè)成本包括NRE成本(Non-Recurring Engineering,指芯片設計和掩膜制作成本,對于一塊芯片而言這些成本是一次性的)和制造成本(即每塊芯片制造的成本)。有人計算過(guò),以現在的最新工藝,一塊芯片的NRE要到1000萬(wàn)美元以上。如此高昂的NRE意味著(zhù)需要非常非常高的芯片生產(chǎn)量才能去攤薄這個(gè)成本。換句話(huà)說(shuō),如果芯片的產(chǎn)量不到,那么你就沒(méi)有能力去使用最新的工藝,只能沿用較舊的工藝。這就部分打破了摩爾定律 “投資發(fā)展制程-芯片生產(chǎn)成本降低-用部分利潤繼續投資發(fā)展制程”的邏輯。

  而物理學(xué)的障礙主要來(lái)源于量子效應和光刻精度。晶體管太小就會(huì )碰到各種各樣的問(wèn)題,比如當特征尺寸縮小到10nm的時(shí)候,柵氧化層的厚度僅僅只有十個(gè)原子那么厚,這時(shí)便會(huì )產(chǎn)生諸多量子效應,導致晶體管的特性難以控制。

  我認為,現在芯片行業(yè)的發(fā)展已經(jīng)到了瓶頸期,接下來(lái)的發(fā)展策略有三種,分別是More Moore, More than Moore和Beyond Moore。第一種More Moore,意思是繼續按照摩爾定律的老路走下去,繼續縮小晶體管尺寸;第二種More than Moore,意思是首先芯片系統性能的提升不再單純地靠晶體管的縮小,而是更多地靠電路設計以及系統算法優(yōu)化。其次集成度的提高不一定要靠把更多模塊放到同一塊芯片上,而是可以靠封裝技術(shù)來(lái)實(shí)現,例如Intel的EMIB,TSMC的InFO等等(蘋(píng)果的處理器就用了InFO技術(shù));第三種Beyond Moore,意思是干脆不用CMOS器件而是去研發(fā)一些新的器件,不過(guò)這個(gè)目前看起來(lái)還比較遙遠。未來(lái)估計是會(huì )More Moore結合More than Moore,隨著(zhù)時(shí)間推移More than Moore比重越來(lái)越大。

  其實(shí)我對未來(lái)還是蠻悲觀(guān)的,這個(gè)瓶頸期如果沒(méi)有新器件誕生的話(huà),應該會(huì )持續5年10年甚至更長(cháng)一段時(shí)間。就像鋼鐵行業(yè),它早已進(jìn)入平緩期,也沒(méi)什么特別新的技術(shù),如果這個(gè)行業(yè)想要有比較大的發(fā)展,那除非是發(fā)現新的材料可以替代鋼。半導體行業(yè)也一樣,什么時(shí)候出來(lái)新器件結束這個(gè)瓶頸期我也不知道,有的時(shí)候科學(xué)上的事情就是很偶然,可能突然就發(fā)現某種材料可以用了,但如果你找不到新材料,就是沒(méi)辦法有很大突破。

  二、NV/Google/Intel/AMD在芯片的不同戰略

  其實(shí)人工智能計算還是分很多領(lǐng)域,芯片應用大概有兩個(gè)極端:一個(gè)是用于云端服務(wù)器的高功耗高計算能力的芯片,走的是高性能超級計算機(HPC)的路子;另一個(gè)是用于終端(比如手機)的人工智能芯片,這個(gè)就特別注重低功耗,對計算能力的要求不是特別高。

  在云端服務(wù)器這個(gè)領(lǐng)域,因為要處理海量的數據,Nvidia的GPU已經(jīng)成為服務(wù)器不可或缺的一部分,但Nvidia自己目前還沒(méi)有打算大規模自己做服務(wù)器,因此在人工智能的云端市場(chǎng),Nvidia提供的是硬件而非平臺。而在終端這個(gè)領(lǐng)域,Nvidia基于GPU的人工智能平臺一方面功耗太大,另一方面過(guò)高的計算能力反而導致成本過(guò)高,因此無(wú)法與定制芯片抗衡。其實(shí),Nvidia的人工智能平臺最具優(yōu)勢的應用場(chǎng)景是上面兩種情況的中間,即數據量中等、對計算能力要求還比較高、對功耗有一定要求但是并不苛刻的地方,比如ADAS市場(chǎng)。Nvidia人工智能平臺無(wú)論計算能力(10-100TOPS)還是功耗(10-100W)都能完美地符合要求,因此它主打自動(dòng)駕駛市場(chǎng)并不奇怪,它在2017年1月份舉辦的CES上也主要發(fā)布了自動(dòng)駕駛相關(guān)的產(chǎn)品。

  Intel的話(huà),從三個(gè)方面來(lái)說(shuō)吧。第一,在云端市場(chǎng),它是最大的玩家,并且正在積極準備與Nvidia抗衡,因為Intel在HPC方面的業(yè)務(wù)本來(lái)就是駕輕就熟,而Nvidia進(jìn)入HPC還沒(méi)有幾年,只能算這個(gè)市場(chǎng)的new player。大概是在2013年的時(shí)候,人們才發(fā)現原來(lái)GPU可以用于深度學(xué)習,之前根本不知道這個(gè)事情。說(shuō)回Intel,它在收購Altera之后推出了基于FPGA的專(zhuān)用深度學(xué)習加速卡,可以在云端使用。另外Intel收購Nervana后正在積極推廣結合其技術(shù)為優(yōu)化的Knight Mill至強處理器,目標也是在云端。第二,在車(chē)載端,Intel與Mobileye和BMW結成了自動(dòng)駕駛聯(lián)盟,Mobileye提供傳感器芯片和算法,Intel提供云端計算平臺,BMW提供汽車(chē)。第三,在移動(dòng)端,Intel收購了Movidius,但是尚未看到大的動(dòng)作。所以我預期,移動(dòng)端的人工智能芯片,如果有的話(huà)還是高通之類(lèi)的廠(chǎng)商會(huì )比較有優(yōu)勢。

  再說(shuō)Google,它推出來(lái)的芯片TPU主要是自用的。這個(gè)有點(diǎn)像IBM,IBM最早出的Power PC系列芯片也是為了給自己的server用。所以Google也是類(lèi)似的思路,它的芯片就沒(méi)有打算給別人用,換句話(huà)說(shuō)它沒(méi)有真的打算進(jìn)入芯片這個(gè)市場(chǎng),和別人競爭。

  最后說(shuō)AMD,它在GPU和CPU的技術(shù)都處于追趕者的位置,在方面比較低調,在CES上公布新產(chǎn)品的時(shí)候也都沒(méi)有主動(dòng)去提人工智能的事情。最近的新聞大概是和阿里巴巴合作云端服務(wù)作為試水。AMD的總體思路還是求穩,不刻意去跟Nvidia爭誰(shuí)先誰(shuí)后,它就等你們把這些東西先做出來(lái)再說(shuō),自己就很踏實(shí)地把顯卡技術(shù)做好。其實(shí)GPU天生就符合深度學(xué)習的要求,只要AMD把自己芯片的運算能力做上去,它很快就可以殺入人工智能這個(gè)領(lǐng)域中來(lái)。

 三、Nvidia面臨的機遇和挑戰

  2016年是人工智能爆發(fā)的一年,借著(zhù)這股東風(fēng),Nvidia的股價(jià)在去年飛升三倍有余,令人驚嘆。目前看來(lái),Nvidia的技術(shù)成長(cháng)空間還有很多,因為Nvidia正在轉型成為平臺公司而不是硬件公司,GPU會(huì )是它的核心但是不是全部,它要做的是圍繞GPU的一個(gè)平臺、一個(gè)生態(tài)。與GPU配套的各種設施,例如開(kāi)發(fā)平臺、開(kāi)發(fā)者社區和包絡(luò )編程語(yǔ)言在內的開(kāi)發(fā)工具也非常重要。舉例來(lái)說(shuō),在筆記本PC市場(chǎng),其實(shí)ARM的處理器性能完全可以和Intel相抗衡,但是為什么基本沒(méi)有筆記本電腦用ARM的處理器?就是因為ARM在筆記本PC上沒(méi)有任何生態(tài)。一旦平臺和生態(tài)做起來(lái),即使它的技術(shù)發(fā)展不像原來(lái)那么生猛,我相信Nvidia的商業(yè)價(jià)值仍然可以得到保證。假如明天AMD做出來(lái)一個(gè)和Nvidia性能一模一樣的GPU,它一時(shí)半會(huì )兒也還是無(wú)法取代Nvidia,因為Nvidia有自己的CUDA、CUDNN等配套的開(kāi)發(fā)工具。

  而Nvidia可能會(huì )面臨的最大風(fēng)險在于,它現在的股價(jià)完全由人工智能來(lái)支撐,但人工智能的應用會(huì )不會(huì )像投資者想象中發(fā)展的那么快是存疑的。其實(shí)非常明顯現在人工智能的應用有很大的泡沫,大家預期它在一兩年之內會(huì )起來(lái)。但是如果它在一兩年之內沒(méi)有起來(lái)或者說(shuō)某些應用沒(méi)有能真的落地,那時(shí)候投資者可能會(huì )有些反沖?,F在是一個(gè)overshoot,發(fā)現沒(méi)有達到預期之后就會(huì )有一個(gè)undershoot,幾次震蕩之后慢慢回到理性估值。

  四、FPGA的玩家和留給創(chuàng )業(yè)公司的機會(huì )

  FPGA全稱(chēng)“可編輯門(mén)陣列”(Field Programmable Gate Array),其基本原理是在FPGA芯片內集成大量的數字電路基本門(mén)電路以及存儲器,而用戶(hù)可以通過(guò)燒入FPGA配置文件來(lái)來(lái)定義這些門(mén)電路以及存儲器之間的連線(xiàn)。這種燒入不是一次性的,即用戶(hù)今天可以把FPGA配置成一個(gè)微控制器MCU,明天可以編輯配置文件把同一個(gè)FPGA配置成一個(gè)音頻編解碼器?,F在FPGA和人工智能相關(guān)的主要機會(huì )是云端服務(wù)器的可配置運算 ,目前這個(gè)領(lǐng)域的玩家主要是兩個(gè),Xilinx和Altera,后者已經(jīng)被Intel收購。

  當下FPGA遇到的一個(gè)最關(guān)鍵的問(wèn)題就是開(kāi)發(fā)者生態(tài)。傳統CPU也好GPU也好,編程是比較容易的,使用的是語(yǔ)言是C++、Java,大家都很熟悉,而且已經(jīng)形成了成熟的體系,開(kāi)發(fā)環(huán)境、生態(tài)系統還有開(kāi)發(fā)者的社區這些都很好。但是FPGA開(kāi)發(fā)通常需要使用硬件描述語(yǔ)言,如Verilog、VHDL等等,這些對于程序員來(lái)說(shuō)需要大量的時(shí)間才能掌握。這樣的話(huà)FPGA的生態(tài)就無(wú)法發(fā)展,因為門(mén)檻高意味著(zhù)做的人少,做的人少意味著(zhù)知名度低,相關(guān)項目數量少,這又導致了無(wú)法吸引到開(kāi)發(fā)者參與項目,如此便形成了惡性循環(huán)。

  針對這種情況,Xilinx就發(fā)布了一個(gè)比較能改善生態(tài)的東西,叫做可重配置加速棧,這些用于云端的FPGA將會(huì )使用部分重配置方案。什么意思呢?通常FPGA配置過(guò)程包括硬件描述語(yǔ)言的綜合、布局布線(xiàn)、最后產(chǎn)生比特流文件并寫(xiě)入以完成配置。在這個(gè)過(guò)程中,綜合以及布局布線(xiàn)花費的時(shí)間非常長(cháng),可達數小時(shí),而最后比特流文件寫(xiě)入以及配置可以在一秒內完成。用于云端的FPGA方案為了實(shí)現快速應用切換,預計將會(huì )使用硬IP(即針對某應用硬件加速的比特流),并在需要使用該應用時(shí)快速寫(xiě)入該比特流。在未來(lái),云端FPGA的生態(tài)預計將不止包括Xilinx,還會(huì )包括許多第三方IP提供商,最后形成類(lèi)似App Store的形式讓使用者方便地選購對應的硬件加速方案并實(shí)時(shí)加載/切換。

  目前國內FPGA水平較弱,而且FPGA需要一整套從軟件到硬件的流程,需要深刻的積累,對于創(chuàng )業(yè)公司并不是一個(gè)最好的方向,更適合國家科研項目。但是創(chuàng )業(yè)公司使用FPGA,做FPGA的解決方案,基于FPGA開(kāi)發(fā)或者做FPGA上的IP,是個(gè)不錯的機會(huì )。換句話(huà)說(shuō)就是你不去手機,而是做APP。其實(shí)這個(gè)方向國內也已經(jīng)有不少公司在做了,我知道的比較出名的有深鑒科技。

  五、玩人工智能軟件的正確姿勢

  目前人工智能軟件最大問(wèn)題是如何把技術(shù)真正落實(shí)到解決消費者的需求,一些算法非常有技術(shù)含量,但是落地并不容易,例如圖像分類(lèi)等等。我覺(jué)得現在做的比較好的軟件是語(yǔ)音識別/交互類(lèi),比較典型的是訊飛輸入法,前陣子在錘子手機的發(fā)布會(huì )上被秀了一把。

  圖像類(lèi)的人工智能算法目前是最火的方向,比語(yǔ)音類(lèi)要火很多,但是目前看來(lái)圖像算法大多數只能作為一個(gè)大系統的一部分。比如一個(gè)安防系統,圖像算法可以用來(lái)檢測一個(gè)人是否帶刀,但是把這個(gè)軟件單獨拉出來(lái)賣(mài)就不一定能成立了。當然也有單獨做軟件的,例如Prisma,這個(gè)之前在Instagram很火的軟件就是利用深度學(xué)習來(lái)做圖像風(fēng)格變換??偨Y一句話(huà)就是,人工智能相關(guān)的軟件當然是一個(gè)非常好的創(chuàng )業(yè)方向,只是要找準這個(gè)創(chuàng )新的賣(mài)點(diǎn),光有好的技術(shù)其實(shí)是沒(méi)什么大用的。

  在人工智能領(lǐng)域,國內也出現了一批還不錯的公司,我有在關(guān)注。在圖像檢測/人臉識別領(lǐng)域,有依圖科技、Face++、商湯科技三只領(lǐng)頭羊,它們主要為銀行和一些安防系統提供人臉識別的解決方案。在醫療領(lǐng)域,就是用人工智能幫忙人類(lèi)判定疾病也有很多公司在做,一圖正在進(jìn)軍這個(gè)領(lǐng)域。在自動(dòng)駕駛領(lǐng)域,軟件方面做的比較有名的是圖森、地平線(xiàn)。其實(shí)地平線(xiàn)攤子鋪得比較大,硬件軟件都做,除了輔助駕駛外,還跟美的合作在做智能家居。還有一些比較小眾的領(lǐng)域,比如鑒黃,就是圖譜在做。硬件的話(huà),比較有名的是寒武紀。

  六、芯片行業(yè)的未來(lái)除了人工智能,還有……

  最后再說(shuō)回到整個(gè)芯片行業(yè)的發(fā)展上來(lái)。有人問(wèn),芯片行業(yè)是不是有一個(gè)強者恒強的規律,出現黑馬的幾率有多大。我認為是這樣的:在芯片這個(gè)地方,它是每隔一段就會(huì )換一個(gè)應用方向,90年代時(shí)候最火的是多媒體電腦,也就是PC端,后來(lái)就變到了移動(dòng)端,最近則是人工智能。眾所周知,Intel是PC時(shí)代永遠的老大,在那25年的時(shí)間里基本碾壓所有競爭對手,但移動(dòng)設備這個(gè)方向它就完全錯過(guò)了。所以說(shuō),在同一個(gè)領(lǐng)域里基本上是強者恒強,很難有超越,但是在這個(gè)領(lǐng)域強,不代表在下一個(gè)領(lǐng)域也會(huì )強,在“時(shí)代”交替的時(shí)候是最容易出黑馬的。我們在評判企業(yè)價(jià)值的時(shí)候,要對芯片的技術(shù)應用有一個(gè)判斷,要非常清楚下一個(gè)所謂的風(fēng)口在哪里。

  現在芯片應用最火的方向毫無(wú)疑問(wèn)是人工智能了,我還同時(shí)看好另外一個(gè)方向,就是醫療。我相信在醫療電子領(lǐng)域還有很多可以做的事情,當然這個(gè)方向的發(fā)展還要倚賴(lài)一些基礎設施的建設,比如在線(xiàn)的云平臺和大數據庫等等,這個(gè)部分在這里就不詳細展開(kāi)了。

  討論區:以下為參與live的人提問(wèn),作者回答

  問(wèn):萊迪思半導體(LSCC),大疆無(wú)人機供應商FPGA未來(lái)有潛力,期待分析。

  答:目前中國FPGA進(jìn)口第一是華為,第二就是大疆。大疆使用FPGA量很大,然而未來(lái)從成本考慮很大可能會(huì )用ASIC代替。

  問(wèn):目前國內的人工智能相關(guān)芯片的發(fā)展情況如何,主要有哪些公司在做?離國際先進(jìn)水平有多大的差距?

  答:國內人工智能芯片有寒武紀,深鑒等初創(chuàng )公司,也有華為等大公司在布局,與國外差距不大,尤其是寒武紀已經(jīng)走在世界前列。

  問(wèn):AI芯片目前主要的幾種商業(yè)模式有哪些?

  答:一般有兩種,一種是直接賣(mài)芯片,還有是賣(mài)IP,IP的話(huà)是芯片里的一部分,可以集成在其他公司的芯片里。

  問(wèn):圖像分類(lèi)可否用在發(fā)票圖像處理?比如發(fā)票、車(chē)票這些,拍照后,經(jīng)過(guò)處理,變成會(huì )計分錄。這個(gè)市場(chǎng)無(wú)限大。

  答:圖像分類(lèi)當然可以用在發(fā)票分類(lèi)上,實(shí)現手寫(xiě)和數字識別。關(guān)于票據問(wèn)題,是的,市場(chǎng)是很大,目前美國支票存取已經(jīng)是自動(dòng)識別了,用手機app拍照就行。

  問(wèn):Nvidia一半以上的收入還在傳統游戲顯卡市場(chǎng)吧,云計算和人工智能短期增速如果不盡如人意的話(huà),股價(jià)回調就不可避免了。

  答:關(guān)于NV的股價(jià),我認為這位朋友的分析很有道理。

  問(wèn):想請教一下,FPGA在用電量是不是一般ASIC的3X,晶片大小是不是為ASIC的2X?

  答:FPGA的用電量在A(yíng)SIC的十倍以上,造價(jià)也在十倍以上。

  問(wèn):您知道做鑒黃的除了圖譜科技,還沒(méi)有其他的團隊?

  答:鑒黃的技術(shù)壁壘不高,關(guān)鍵是渠道要搞定。

  問(wèn):我這收集了2個(gè)觀(guān)點(diǎn),能不能幫我評價(jià)一下呢?第一個(gè):Nvidia在人工智能芯片市場(chǎng)的真實(shí)統治力,可能比股票市場(chǎng)上的亮眼成績(jì)更為顯著(zhù)。盡管市場(chǎng)上也存在其他深度學(xué)習訓練(training)和預測(Inference)的解決方案,但試問(wèn)各家AI企業(yè),無(wú)論其內部的模型訓練,還是銷(xiāo)售給最終客戶(hù)的智能產(chǎn)品,絕大多數還是采用了Nvidia的GPU方案。第二,值得關(guān)注的是,就異構計算的主要應用機器學(xué)習來(lái)看,分為訓練和推斷兩個(gè)部分。其中,訓練市場(chǎng)占整個(gè)機器學(xué)習市場(chǎng)的5%,其余95%都是推斷市場(chǎng)。Steve Glaser認為,GPU僅僅是關(guān)注機器學(xué)習的訓練市場(chǎng),而推斷市場(chǎng)才是FPGA關(guān)注的領(lǐng)域,這恰恰是機器學(xué)習未來(lái)發(fā)展的重要組成部分。

  答:第一個(gè)判斷是對的,第二個(gè)判斷的話(huà),FPGA在云端會(huì )用得比較多,inference在終端還是要靠ASIC。

  問(wèn):李博士,AI芯片對人工智能應用的影響是什么?AI芯片離大規模商用還有多遠?

  答:AI芯片技術(shù)上離大規模商用不遠了,但是使用專(zhuān)用AI的ASIC市場(chǎng)還沒(méi)完全起來(lái),很多公司在觀(guān)望,Intel等公司在慢慢布局,新推出的Xeon Phi服務(wù)器CPU里面加入了部分的AI加速。

  問(wèn):能否比較一下寒武紀和Nvidia的ai芯片的差別?

  答:寒武紀是專(zhuān)用ai加速芯片,nvidia的gpu是通用計算單元只是比較適合計算深度學(xué)習。

  問(wèn):IBM的沃森在醫療上的運用效果如何?

  答:IBM Watson在醫療上的應用已經(jīng)有不少報道,大數據和AI在醫療上得到應用一定會(huì )成為現實(shí)。目前醫學(xué)的研究都是基于數據的研究,之前的研究樣本量都不大,使用了大數據加人工智能后醫學(xué)的發(fā)展一定會(huì )大大加速。

  問(wèn):再問(wèn)一個(gè):如果谷歌最終選擇了使用TPU,會(huì )不會(huì )對英特爾和英偉達這些芯片制造商構成巨大的威脅?因為他們的在線(xiàn)業(yè)務(wù)是如此巨大。他們比地球上任何其它公司購買(mǎi)或運營(yíng)的計算機硬件都要多,而且隨著(zhù)云計算的重要性持續增加,這個(gè)差距也只會(huì )越來(lái)越大。

  答:會(huì )有一些,但不會(huì )是最大的影響,因為google的服務(wù)器在整個(gè)服務(wù)器市場(chǎng)占比例不大。

  問(wèn):高通在CES展上推出驍龍835,適合深度學(xué)習,這款芯片和高通在人工智能方面能不能解讀一下?

  答:snapdragon 835對于ai的支持主要在于dsp對于深度學(xué)習算法支持的design kit。

  問(wèn):感謝分享,我的問(wèn)題是目前人工智能變?yōu)閷?shí)際應用,變成類(lèi)似移動(dòng)互聯(lián)網(wǎng)這樣的產(chǎn)業(yè)最大的難點(diǎn)是什么?目前看到的一些應用主要在智能客服等,還有c端的應用主要是類(lèi)似echo等的家庭智能音箱,未來(lái)可以預見(jiàn)的最大應用是自動(dòng)駕駛和醫療領(lǐng)域的應用,其他呢,其他通過(guò)人工智能更深度的改變會(huì )在哪里?

  答:人工智能變?yōu)楝F實(shí)的難度在于如何落地。人工駕駛和醫療是兩個(gè)重要的點(diǎn),然而人工駕駛必須能通過(guò)各種極端情況下的驗證才能上馬。輔助駕駛離現實(shí)比較接近。醫學(xué)使用目前看起來(lái)比較接近實(shí)用,因為AI比人做得好不難,主要障礙在于基礎設施不好大數據很難獲得,例如病歷如何聯(lián)網(wǎng)。AI離使用最接近的是金融領(lǐng)域,目前高頻交易,詐騙檢測等已經(jīng)用上了AI。



關(guān)鍵詞: AI 芯片

評論


相關(guān)推薦

技術(shù)專(zhuān)區

關(guān)閉
国产精品自在自线亚洲|国产精品无圣光一区二区|国产日产欧洲无码视频|久久久一本精品99久久K精品66|欧美人与动牲交片免费播放
<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>