<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>
"); //-->

博客專(zhuān)欄

EEPW首頁(yè) > 博客 > 干貨 | 技術(shù)參數詳解,MOS管知識最全收錄

干貨 | 技術(shù)參數詳解,MOS管知識最全收錄

發(fā)布人:旺材芯片 時(shí)間:2022-06-12 來(lái)源:工程師 發(fā)布文章
MOS管,即金屬(Metal)—氧化物(Oxide)—半導體(Semiconductor)場(chǎng)效應晶體管,是一種應用場(chǎng)效應原理工作的半導體器件。


和普通雙極型晶體管相比,MOS管具有輸入阻抗高、噪聲低、動(dòng)態(tài)范圍大、功耗小、易于集成等優(yōu)勢,在開(kāi)關(guān)電源、鎮流器、高頻感應加熱、高頻逆變焊機、通信電源等高頻電源領(lǐng)域得到了越來(lái)越普遍的應用。


MOS管的種類(lèi)及結構



MOS管是FET的一種(另一種為JFET結型場(chǎng)效應管),主要有兩種結構形式:N溝道型和P溝道型;又根據場(chǎng)效應原理的不同,分為耗盡型(當柵壓為零時(shí)有較大漏極電流)和增強型(當柵壓為零,漏極電流也為零,必須再加一定的柵壓之后才有漏極電流)兩種。因此,MOS管可以被制構成P溝道增強型、P溝道耗盡型、N溝道增強型、N溝道耗盡型4種類(lèi)型產(chǎn)品。

圖片圖表1  MOS管的4種類(lèi)型
每一個(gè)MOS管都提供有三個(gè)電極:Gate柵極(表示為“G”)、Source源極(表示為“S”)、Drain漏極(表示為“D”)。接線(xiàn)時(shí),對于N溝道的電源輸入為D,輸出為S;P溝道的電源輸入為S,輸出為D;且增強型、耗盡型的接法基本一樣。
圖片圖表2  MOS管內部結構圖
從結構圖可發(fā)現,N溝道型場(chǎng)效應管的源極和漏極接在N型半導體上,而P溝道型場(chǎng)效應管的源極和漏極則接在P型半導體上。場(chǎng)效應管輸出電流由輸入的電壓(或稱(chēng)場(chǎng)電壓)控制,其輸入的電流極小或沒(méi)有電流輸入,使得該器件有很高的輸入阻抗,這也是MOS管被稱(chēng)為場(chǎng)效應管的重要原因。

MOS管工作原理


1、N溝道增強型場(chǎng)效應管原理


N溝道增強型MOS管在P型半導體上生成一層SiO2薄膜絕緣層,然后用光刻工藝擴散兩個(gè)高摻雜的N型區,從N型區引出電極(漏極D、源極S);在源極和漏極之間的SiO2絕緣層上鍍一層金屬鋁作為柵極G;P型半導體稱(chēng)為襯底,用符號B表示。由于柵極與其它電極之間是相互絕緣的,所以NMOS又被稱(chēng)為絕緣柵型場(chǎng)效應管。

當柵極G和源極S之間不加任何電壓,即VGS=0時(shí),由于漏極和源極兩個(gè)N+型區之間隔有P型襯底,相當于兩個(gè)背靠背連接的PN結,它們之間的電阻高達1012Ω,即D、S之間不具備導電的溝道,所以無(wú)論在漏、源極之間加何種極性的電壓,都不會(huì )產(chǎn)生漏極電流ID。
圖片圖表3  N溝道增強型MOS管結構示意圖
當將襯底B與源極S短接,在柵極G和源極S之間加正電壓,即VGS>0時(shí),如圖表3(a)所示,則在柵極與襯底之間產(chǎn)生一個(gè)由柵極指向襯底的電場(chǎng)。在這個(gè)電場(chǎng)的作用下,P襯底表面附近的空穴受到排斥將向下方運動(dòng),電子受電場(chǎng)的吸引向襯底表面運動(dòng),與襯底表面的空穴復合,形成了一層耗盡層。
如果進(jìn)一步提高VGS電壓,使VGS達到某一電壓VT時(shí),P襯底表面層中空穴全部被排斥和耗盡,而自由電子大量地被吸引到表面層,由量變到質(zhì)變,使表面層變成了自由電子為多子的N型層,稱(chēng)為“反型層”,如圖表3(b)所示。
反型層將漏極D和源極S兩個(gè)N+型區相連通,構成了漏、源極之間的N型導電溝道。把開(kāi)始形成導電溝道所需的VGS值稱(chēng)為閾值電壓或開(kāi)啟電壓,用VGS(th)表示。顯然,只有VGS>VGS(th)時(shí)才有溝道,而且VGS越大,溝道越厚,溝道的導通電阻越小,導電能力越強;“增強型”一詞也由此得來(lái)。
圖片圖表4  耗盡層與反型層產(chǎn)生的結構示意圖
在VGS>VGS(th)的條件下,如果在漏極D和源極S之間加上正電壓VDS,導電溝道就會(huì )有電流流通。漏極電流由漏區流向源區,因為溝道有一定的電阻,所以沿著(zhù)溝道產(chǎn)生電壓降,使溝道各點(diǎn)的電位沿溝道由漏區到源區逐漸減小,靠近漏區一端的電壓VGD最小,其值為VGD=VGS-VDS,相應的溝道最??;靠近源區一端的電壓最大,等于VGS,相應的溝道最厚。
這樣就使得溝道厚度不再是均勻的,整個(gè)溝道呈傾斜狀。隨著(zhù)VDS的增大,靠近漏區一端的溝道越來(lái)越薄。
當VDS增大到某一臨界值,使VGD≤VGS(th)時(shí),漏端的溝道消失,只剩下耗盡層,把這種情況稱(chēng)為溝道“預夾斷”,如圖表4(a)所示。繼續增大VDS[即VDS>VGS-VGS(th)],夾斷點(diǎn)向源極方向移動(dòng),如圖表4(b)所示。
盡管夾斷點(diǎn)在移動(dòng),但溝道區(源極S到夾斷點(diǎn))的電壓降保持不變,仍等于VGS-VGS(th)。因此,VDS多余部分電壓[VDS-(VGS-VGS(th))]全部降到夾斷區上,在夾斷區內形成較強的電場(chǎng)。這時(shí)電子沿溝道從源極流向夾斷區,當電子到達夾斷區邊緣時(shí),受夾斷區強電場(chǎng)的作用,會(huì )很快的漂移到漏極。
圖片圖表5  預夾斷及夾斷區形成示意圖

2、P溝道增強型場(chǎng)效應管原理


P溝道增強型MOS管因在N型襯底中生成P型反型層而得名,其通過(guò)光刻、擴散的方法或其他手段,在N型襯底(基片)上制作出兩個(gè)摻雜的P區,分別引出電極(源極S和漏極D),同時(shí)在漏極與源極之間的SiO2絕緣層上制作金屬柵極G。其結構和工作原理與N溝道MOS管類(lèi)似;只是使用的柵-源和漏-源電壓極性與N溝道MOS管相反。

在正常工作時(shí),P溝道增強型MOS管的襯底必須與源極相連,而漏極對源極的電壓VDS應為負值,以保證兩個(gè)P區與襯底之間的PN結均為反偏,同時(shí)為了在襯底頂表面附近形成導電溝道,柵極對源極的電壓也應為負。
圖片圖表6  P溝道增強型MOS管的結構示意圖
當VDS=0時(shí)。在柵源之間加負電壓比,由于絕緣層的存在,故沒(méi)有電流,但是金屬柵極被補充電而聚集負電荷,N型半導體中的多子電子被負電荷排斥向體內運動(dòng),表面留下帶正電的離子,形成耗盡層。
隨著(zhù)G、S間負電壓的增加,耗盡層加寬,當VDS增大到一定值時(shí),襯底中的空穴(少子)被柵極中的負電荷吸引到表面,在耗盡層和絕緣層之間形成一個(gè)P型薄層,稱(chēng)反型層,如圖表6(2)所示。
這個(gè)反型層就構成漏源之間的導電溝道,這時(shí)的VGS稱(chēng)為開(kāi)啟電壓VGS(th),達到VGS(th)后再增加,襯底表面感應的空穴越多,反型層加寬,而耗盡層的寬度卻不再變化,這樣我們可以用VGS的大小控制導電溝道的寬度。
圖片圖表7  P溝道增強型MOS管耗盡層及反型層形成示意圖
當VDS≠0時(shí)。導電溝道形成以后,D、S間加負向電壓時(shí),那么在源極與漏極之間將有漏極電流ID流通,而且ID隨VDS而增,ID沿溝道產(chǎn)生的壓降使溝道上各點(diǎn)與柵極間的電壓不再相等,該電壓削弱了柵極中負電荷電場(chǎng)的作用,使溝道從漏極到源極逐漸變窄,如圖表7(1)所示。
當VDS增大到使VGD=VGS(即VDS=VGS-VGS(TH)),溝道在漏極附近出現預夾斷,如圖表7(2)所示。再繼續增大VDS,夾斷區只是稍有加長(cháng),而溝道電流基本上保持預夾斷時(shí)的數值,其原因是當出現預夾斷時(shí)再繼續增大VDS,VDS的多余部分就全部加在漏極附近的夾斷區上,故形成的漏極電流ID近似與VDS無(wú)關(guān)。
圖片圖表8  P溝道增強型MOS管預夾斷及夾斷區形成示意圖

3、N溝道耗盡型場(chǎng)效應管原理


N溝道耗盡型MOS管的結構與增強型MOS管結構類(lèi)似,只有一點(diǎn)不同,就是N溝道耗盡型MOS管在柵極電壓VGS=0時(shí),溝道已經(jīng)存在。這是因為N溝道是在制造過(guò)程中采用離子注入法預先在D、S之間襯底的表面、柵極下方的SiO2絕緣層中摻入了大量的金屬正離子,該溝道亦稱(chēng)為初始溝道。

當VGS=0時(shí),這些正離子已經(jīng)感應出反型層,形成了溝道,所以只要有漏源電壓,就有漏極電流存在;當VGS>0時(shí),將使ID進(jìn)一步增加;VGS<0時(shí),隨著(zhù)VGS的減小,漏極電流逐漸減小,直至ID=0。對應ID=0的VGS稱(chēng)為夾斷電壓或閾值電壓,用符號VGS(off)或Up表示。
由于耗盡型MOSFET在VGS=0時(shí),漏源之間的溝道已經(jīng)存在,所以只要加上VDS,就有ID流通。如果增加正向柵壓VGS,柵極與襯底之間的電場(chǎng)將使溝道中感應更多的電子,溝道變厚,溝道的電導增大。
如果在柵極加負電壓(即VGS<0),就會(huì )在相對應的襯底表面感應出正電荷,這些正電荷抵消N溝道中的電子,從而在襯底表面產(chǎn)生一個(gè)耗盡層,使溝道變窄,溝道電導減小。當負柵壓增大到某一電壓VGS(off)時(shí),耗盡區擴展到整個(gè)溝道,溝道完全被夾斷(耗盡),這時(shí)即使VDS仍存在,也不會(huì )產(chǎn)生漏極電流,即ID=0。
圖片圖表9  N溝道耗盡型MOS管結構(左)及轉移特性(右)示意圖

4、P溝道耗盡型場(chǎng)效應管原理


P溝道耗盡型MOS管的工作原理與N溝道耗盡型MOS管完全相同,只不過(guò)導電的載流子不同,供電電壓極性也不同。

5、耗盡型與增強型MOS管的區別


耗盡型與增強型的主要區別在于耗盡型MOS管在G端(Gate)不加電壓時(shí)有導電溝道存在,而增強型MOS管只有在開(kāi)啟后,才會(huì )出現導電溝道;兩者的控制方式也不一樣,耗盡型MOS管的VGS(柵極電壓)可以用正、零、負電壓控制導通,而增強型MOS管必須使得VGS>VGS(th)(柵極閾值電壓)才行。

由于耗盡型N溝道MOS管在SiO2絕緣層中摻有大量的Na+或K+正離子(制造P溝道耗盡型MOS管時(shí)摻入負離子),當VGS=0時(shí),這些正離子產(chǎn)生的電場(chǎng)能在P型襯底中感應出足夠的電子,形成N型導電溝道;當VGS>0時(shí),將產(chǎn)生較大的ID(漏極電流);如果使VGS<0,則它將削弱正離子所形成的電場(chǎng),使N溝道變窄,從而使ID減小。
這些特性使得耗盡型MOS管在實(shí)際應用中,當設備開(kāi)機時(shí)可能會(huì )誤觸發(fā)MOS管,導致整機失效;不易被控制,使得其應用極少。
因此,日常我們看到的NMOS、PMOS多為增強型MOS管;其中,PMOS可以很方便地用作高端驅動(dòng)。不過(guò)PMOS由于存在導通電阻大、價(jià)格貴、替換種類(lèi)少等問(wèn)題,在高端驅動(dòng)中,通常還是使用NMOS替代,這也是市面上無(wú)論是應用還是產(chǎn)品種類(lèi),增強型NMOS管最為常見(jiàn)的重要原因,尤其在開(kāi)關(guān)電源和馬達驅動(dòng)的應用中,一般都用NMOS管。

MOS管重要特性



1、導通特性


導通的意義是作為開(kāi)關(guān),相當于開(kāi)關(guān)閉合。NMOS的特性,VGS大于一定的值就會(huì )導通,適用于源極接地時(shí)的情況(低端驅動(dòng)),只需柵極電壓達到4V或10V就可以了。PMOS的特性是,VGS小于一定的值就會(huì )導通,適用于源極接VCC時(shí)的情況(高端驅動(dòng))。

2、損失特性


不管是NMOS還是PMOS,導通后都有導通電阻存在,電流就會(huì )被電阻消耗能量,這部分消耗的能量叫做導通損耗。小功率MOS管導通電阻一般在幾毫歐至幾十毫歐左右,選擇導通電阻小的MOS管會(huì )減小導通損耗。
MOS管在進(jìn)行導通和截止時(shí),兩端的電壓有一個(gè)降落過(guò)程,流過(guò)的電流有一個(gè)上升的過(guò)程,在這段時(shí)間內,MOS管的損失是電壓和電流的乘積,這稱(chēng)之為開(kāi)關(guān)損失。通常開(kāi)關(guān)損失比導通損失大得多,而且開(kāi)關(guān)頻率越快,損失也越大。
導通瞬間電壓和電流的乘積越大,構成的損失也就越大??s短開(kāi)關(guān)時(shí)間,可以減小每次導通時(shí)的損失;降低開(kāi)關(guān)頻率,可以減小單位時(shí)間內的開(kāi)關(guān)次數。這兩種辦法都可以減小開(kāi)關(guān)損失。

3、寄生電容驅動(dòng)特性


跟雙極性晶體管相比,MOS管需要GS電壓高于一定的值才能導通,而且還要求較快的導通速度。在MOS管的結構中可以看到,在GS、GD之間存在寄生電容,而MOS管的驅動(dòng),理論上就是對電容的充放電。

對電容的充電需要一個(gè)電流,由于對電容充電瞬間可以把電容看成短路,所以瞬間電流會(huì )比較大。選擇/設計MOS管驅動(dòng)時(shí)第一個(gè)要留意的是可提供瞬間短路電流的大??;第二個(gè)要留意的是,普遍用于高端驅動(dòng)的NMOS,導通時(shí)需要柵極電壓大于源極電壓。
而高端驅動(dòng)的MOS管導通時(shí)源極電壓與漏極電壓(VCC)相同,所以這時(shí)柵極導通電壓要比VCC高4V或10V,而且電壓越高,導通速度越快,導通電阻也越小。
圖片圖表10  4種MOS管特性比較示意圖

4、寄生二極管


漏極和源極之間有一個(gè)寄生二極管,即“體二極管”,在驅動(dòng)感性負載(如馬達、繼電器)應用中,主要用于保護回路。不過(guò)體二極管只在單個(gè)MOS管中存在,在集成電路芯片內部通常是沒(méi)有的。

圖片圖表11  寄生二極管位置示意圖

5、不同耐壓MOS管特點(diǎn)


不同耐壓的MOS管,其導通電阻中各部分電阻比例分布不同。如耐壓30V的MOS管,其外延層電阻僅為總導通電阻的29%,耐壓600V的MOS管的外延層電阻則是總導通電阻的96.5%。

不同耐壓MOS管的區別主要在于,耐高壓的MOS管其反應速度比耐低壓的MOS管要慢,因此,它們的特性在實(shí)際應用中也表現出了不一樣之處,如耐中低壓MOS管只需要極低的柵極電荷就可以滿(mǎn)足強大電流和大功率處理能力,除開(kāi)關(guān)速度快之外,還具有開(kāi)關(guān)損耗低的特點(diǎn),特別適應PWM輸出模式應用;而耐高壓MOS管具有輸入阻抗高的特性,在電子鎮流器、電子變壓器、開(kāi)關(guān)電源方面應用較多。
圖片圖表12  不同耐壓MOS管特點(diǎn)一覽表

MOS管與三極管、IBGT的差別


1、MOS管與三極管的差別


三極管全稱(chēng)為半導體三極管,它的主要作用就是將微小的信號中止放大。MOS管與三極管有著(zhù)許多相近的地方,也有許多不同之處。

首先是開(kāi)關(guān)速度的不同。三極管工作時(shí),兩個(gè)PN結都會(huì )感應出電荷,當開(kāi)關(guān)管處于導通狀態(tài)時(shí),三極管處于飽和狀態(tài),假設這時(shí)三極管截至,PN結感應的電荷要恢復到平衡狀態(tài),這個(gè)過(guò)程需求時(shí)間。而MOS由于工作方式不同,不需要恢復時(shí)間,因此可以用作高速開(kāi)關(guān)管。
其次是控制方式不同。MOS管是電壓控制元件,而三級管是電流控制元件。在只允許從信號源取較少電流的情況下,應選用MOS管;而在信號電壓較低,又允許從信號源取較多電流的條件下,應選用三極管。
接著(zhù)是載流子種類(lèi)數量不同。電力電子技術(shù)中提及的單極器件是指只靠一種載流子導電的器件,雙極器件是指靠?jì)煞N載流子導電的器件。MOS管只應用了一種多數載流子導電,所以也稱(chēng)為單極型器件;而三極管是既有多數載流子,也應用少數載流子導電;是為雙極型器件。
第三是靈活性不同。有些MOS管的源極和漏極可以互換運用,柵壓也可正可負,靈活性比三極管好。
第四是集成能力不同。MOS管能在很小電流和很低電壓的條件下工作,而且它的制造工藝可以很方便地把很多MOS管集成在一塊硅片上,因此MOS管在大范圍集成電路中得到了普遍的應用。
第五是輸入阻抗和噪聲能力不同。MOS管具有較高輸入阻抗和低噪聲等優(yōu)點(diǎn),被普遍應用于各種電子設備中,特別用MOS管做整個(gè)電子設備的輸入級,可以獲得普通三極管很難達到的性能。
最后是功耗損耗不同。同等情況下,采用MOS管時(shí),功耗損耗低;而選用三極管時(shí),功耗損耗要高出許多。
當然,在使用成本上,MOS管要高于三極管,因此根據兩種元件的特性,MOS管常用于高頻高速電路、大電流場(chǎng)所,以及對基極或漏極控制電流比較敏感的中央區域;而三極管則用于低成本場(chǎng)所,達不到效果時(shí)才會(huì )考慮替換選用MOS管。
圖片表13  MOS管與三極管主要差異比較一覽

2、MOS管與IBGT的差別


IGBT(Insulated Gate Bipolar Transistor),絕緣柵雙極型晶體管,是由BJT(雙極型三極管)和MOS絕緣柵型場(chǎng)效應管組成的復合全控型電壓驅動(dòng)式功率半導體器件,兼有MOSFET的高輸入阻抗和功率晶體管(GTR)的低導通壓降兩方面的優(yōu)點(diǎn)。
GTR飽和壓降低,載流密度大,但驅動(dòng)電流較大;MOSFET驅動(dòng)功率很小,開(kāi)關(guān)速度快,但導通壓降大,載流密度小。IGBT綜合了以上兩種器件的優(yōu)點(diǎn),驅動(dòng)功率小而飽和壓降低。常見(jiàn)的IGBT又分為單管和模塊兩種,單管的外觀(guān)和MOS管有點(diǎn)相像,常見(jiàn)生產(chǎn)廠(chǎng)家有富士電機、仙童半導體等,模塊產(chǎn)品一般為內部封裝了數個(gè)單個(gè)IGBT,由內部聯(lián)接成適合的電路。
由于IGBT原理為先開(kāi)通MOS管,再驅動(dòng)三極管開(kāi)通,該原理決定了IGBT的開(kāi)關(guān)速度比MOS管慢,但比三極管快。
制造成本上,IGBT要比MOS管高很多,這是因為IGBT的制作多了薄片背面離子注入、薄片低溫退火(如激光退火)工序,而這兩個(gè)工序都需要專(zhuān)門(mén)針對薄片工藝的昂貴機臺。
在低壓下,低壓MOS管的導通壓降通常都控制在0.5V以下(基本不會(huì )超過(guò)1V的),比如IR4110低壓MOS管,其內阻為4mΩ,給它100A的導通電流,導通壓降是0.4V左右。電流導通壓降低,意味著(zhù)導通損耗小,同時(shí)兼具開(kāi)關(guān)損耗小的特性,因此,IGBT相對MOS管在電性能沒(méi)有優(yōu)勢,加上在性?xún)r(jià)比上MOS管更具優(yōu)勢,所以基本上看不到低壓IGBT。
MOS管的最大劣勢是隨著(zhù)耐壓升高,內阻迅速增大,所以高壓下內阻很大,致使MOS管不能做大功率應用。
在高壓領(lǐng)域,MOS管的開(kāi)關(guān)速度仍是最快的,但高壓下MOS管的導通壓降很大(內阻隨耐壓升高而迅速升高),即便是耐壓600V的COOLMOS管,導通電阻可高達幾歐姆,致使耐流很小。
而IGBT在高耐壓下,導通壓降幾乎沒(méi)明顯增大(IGBT的導通電流通過(guò)三極管處理),所以高壓下IGBT優(yōu)勢明顯,既有高開(kāi)關(guān)速度,又有三極管的大電流特性;另外,在新一代IGBT產(chǎn)品中,開(kāi)關(guān)速度高(納秒級),導通壓降、開(kāi)關(guān)損耗等也有了長(cháng)足進(jìn)步,使得IGBT耐脈沖電流沖擊力更強,且耐壓高、驅動(dòng)功率小等優(yōu)點(diǎn)更加突出。
在需要耐壓超過(guò)150V的使用條件下,MOS管已經(jīng)基本沒(méi)有優(yōu)勢。以典型的IRFS4115與第四代IGBT型SKW30N60對比中,在150V、20A連續工況下運行,前者開(kāi)關(guān)損耗為6mJ/pulse,而后者只有1.15mJ/pulse,不足前者的1/5;若用極限工作條件,二者功率負荷相差將更懸殊!
目前,諸如冶金、鋼鐵、高速鐵路、船舶等有大功率需求的領(lǐng)域已較少見(jiàn)到MOS管,而是廣泛應用IGBT元器件。
總的來(lái)說(shuō),IGBT更適用于高壓、大電流、低頻率(20KHZ左右)場(chǎng)所,電壓越高,IGBT越有優(yōu)勢,在600v以上,IGBT的優(yōu)勢非常明顯;而MOSFET更適用于低電壓、小電流、低頻率(幾十KHz~幾MHz)領(lǐng)域,電壓越低,MOS管越有優(yōu)勢。

MOS管主要參數



場(chǎng)效應管的參數很多,包括極限參數、動(dòng)態(tài)電特性參數和靜態(tài)電特性參數,其中重要的參數有:飽和漏源電流IDSS、夾斷電壓Up、開(kāi)啟電壓VT(加強型絕緣柵管)、跨導gM、漏源擊穿電壓BVDS、最大耗散功率PDSM和最大漏源電流IDSM等。

1、最大額定參數


最大額定參數,要求所有數值取得條件為T(mén)a=25℃。
圖片圖表14  MOS管的絕對最大額定值示例
VDS/VDSS 最大漏源電壓
在柵源短接,漏源額定電壓VDSS[或寫(xiě)作V(BR)DSS]是指漏-源未發(fā)生雪崩擊穿前所能施加的最大電壓。根據溫度的不同,實(shí)際雪崩擊穿電壓可能低于額定VDSS。

VGS/ VGSS 最大柵源電壓
VGS[或寫(xiě)作V(BR)GSS]額定電壓是柵源兩極間可以施加的最大電壓。設定該額定電壓的主要目的是防止電壓過(guò)高導致的柵氧化層損傷。實(shí)際柵氧化層可承受的電壓遠高于額定電壓,但是會(huì )隨制造工藝的不同而改變,因此保持VGS在額定電壓以?xún)瓤梢员WC應用的可靠性。

ID 連續漏電流
ID定義為芯片在最大額定結溫TJ(max)下,管表面溫度在25℃或者更高溫度下,可允許的最大連續直流電流。該參數為結與管殼之間額定熱阻RθJC和管殼溫度的函數:
圖片
ID中并不包含開(kāi)關(guān)損耗,并且實(shí)際使用時(shí)保持管表面溫度在25℃(Tcase)也很難。因此,硬開(kāi)關(guān)應用中實(shí)際開(kāi)關(guān)電流通常小于ID 額定值@ TC=25℃的一半,通常在1/3~1/4。
注:采用熱阻JA可以估算出特定溫度下的ID,這個(gè)值更有現實(shí)意義。
IDM/IDSM 脈沖漏極電流/最大漏源電流
該參數反映了器件可以處理的脈沖電流的高低,脈沖電流要遠高于連續的直流電流。定義IDM的目的在于:線(xiàn)的歐姆區。對于一定的柵-源電壓,MOSFET導通后,存在最大的漏極電流,如圖表15所示,對于給定的一個(gè)柵-源電壓,如果工作點(diǎn)位于線(xiàn)性區域內,漏極電流的增大會(huì )提高漏-源電壓,由此增大導通損耗。長(cháng)時(shí)間工作在大功率之下,將導致器件失效。因此,在典型柵極驅動(dòng)電壓下,需要將額定IDM設定在區域之下,區域的分界點(diǎn)在VGS和曲線(xiàn)相交點(diǎn)。
圖片圖表15  MOSFET導通后,存在最大的漏極電流
因此需要設定電流密度上限,防止芯片溫度過(guò)高而燒毀。這本質(zhì)上是為了防止過(guò)高電流流經(jīng)封裝引線(xiàn),因為在某些情況下,整個(gè)芯片上最“薄弱的連接”不是芯片,而是封裝引線(xiàn)。
考慮到熱效應對于IDM的限制,溫度的升高依賴(lài)于脈沖寬度,脈沖間的時(shí)間間隔,散熱狀況,RDS(on)以及脈沖電流的波形和幅度。單純滿(mǎn)足脈沖電流不超出IDM上限并不能保證結溫不超過(guò)最大允許值??梢詤⒖紵嵝阅芘c機械性能中關(guān)于瞬時(shí)熱阻的討論,來(lái)估計脈沖電流下結溫的情況。
PDSM 最大耗散功率
亦即容許溝道總功耗,標定了器件可以消散的最大功耗,可以表示為最大結溫和管殼溫度為25℃時(shí)熱阻的函數。
TJ、TSTG 工作溫度和存儲環(huán)境溫度的范圍
這兩個(gè)參數標定了器件工作和存儲環(huán)境所允許的結溫區間。設定這樣的溫度范圍是為了滿(mǎn)足器件最短工作壽命的要求。如果確保器件工作在這個(gè)溫度區間內,將極大地延長(cháng)其工作壽命。
EAS 單脈沖雪崩擊穿能量
如果電壓過(guò)沖值(通常由于漏電流和雜散電感造成)未超過(guò)擊穿電壓,則器件不會(huì )發(fā)生雪崩擊穿,因此也就不需要消散雪崩擊穿的能力。雪崩擊穿能量標定了器件可以容忍的瞬時(shí)過(guò)沖電壓的安全值,其依賴(lài)于雪崩擊穿需要消散的能量。定義額定雪崩擊穿能量的器件通常也會(huì )定義額定EAS。額定雪崩擊穿能量與額定UIS具有相似的意義。EAS標定了器件可以安全吸收反向雪崩擊穿能量的高低。
L是電感值,ID為電感上流過(guò)的電流峰值,其會(huì )突然轉換為測量器件的漏極電流。電感上產(chǎn)生的電壓超過(guò)MOSFET擊穿電壓后,將導致雪崩擊穿。雪崩擊穿發(fā)生時(shí),即使MOSFET處于關(guān)斷狀態(tài),電感上的電流同樣會(huì )流過(guò)MOSFET器件。電感上所儲存的能量與雜散電感上存儲,由MOSFET消散的能量類(lèi)似。
MOSFET并聯(lián)后,不同器件之間的擊穿電壓很難完全相同。通常情況是:某個(gè)器件率先發(fā)生雪崩擊穿,隨后所有的雪崩擊穿電流(能量)都從該器件流過(guò)。
EAR 重復雪崩能量
重復雪崩能量已經(jīng)成為“工業(yè)標準”,但是在沒(méi)有設定頻率、其它損耗以及冷卻量的情況下,該參數沒(méi)有任何意義。散熱(冷卻)狀況經(jīng)常制約著(zhù)重復雪崩能量。對于雪崩擊穿所產(chǎn)生的能量高低也很難預測。
額定EAR的真實(shí)意義在于標定了器件所能承受的反復雪崩擊穿能量。該定義的前提條件是:不對頻率做任何限制,從而器件不會(huì )過(guò)熱,這對于任何可能發(fā)生雪崩擊穿的器件都是現實(shí)的。在驗證器件設計的過(guò)程中,最好可以測量處于工作狀態(tài)的器件或者熱沉的溫度,來(lái)觀(guān)察MOSFET器件是否存在過(guò)熱情況,特別是對于可能發(fā)生雪崩擊穿的器件。
IAR 雪崩擊穿電流
對于某些器件,雪崩擊穿過(guò)程中芯片上電流集邊的傾向要求對雪崩電流IAR進(jìn)行限制。這樣,雪崩電流變成雪崩擊穿能量規格的“精細闡述”;其揭示了器件真正的能力。
圖片圖表16  雪崩破壞耐量測定電路和波形
SOA 安全工作區
每種MOS管都會(huì )給出其安全工作區域,功率MOS管不會(huì )表現出二次擊穿,因此安全運行區域只簡(jiǎn)單從導致結溫達到最大允許值時(shí)的耗散功率定義。

2、靜態(tài)電特性


圖片圖表17  靜態(tài)電特性及參數一覽表
V(BR)DSS/VBDSS 漏源擊穿電壓(破壞電壓)
或叫BVDS,是指在特定的溫度和柵源短接情況下,流過(guò)漏極電流達到一個(gè)特定值時(shí)的漏源電壓。這種情況下的漏源電壓為雪崩擊穿電壓。V(BR)DSS是正溫度系數,其漏源電壓的最大額定值隨著(zhù)溫度的下降而降低,在-50℃時(shí),V(BR)DSS大約是25℃時(shí)最大漏源額定電壓的90%。
BVGS 柵源擊穿電壓
在增加柵源電壓過(guò)程中,使柵極電流IG由零開(kāi)端劇增時(shí)的VGS。
VGS(th)閾值電壓
也用VT表示,是指加的柵源電壓能使漏極開(kāi)始有電流,或關(guān)斷MOSFET時(shí)電流消失時(shí)的電壓,測試的條件(漏極電流、漏源電壓、結溫)也是有規格的。正常情況下,所有的MOS柵極器件的閾值電壓都會(huì )有所不同。因此,VGS(th)的變化范圍是規定好的。VGS(th)是負溫度系數,當溫度上升時(shí),MOSFET將會(huì )在比較低的柵源電壓下開(kāi)啟。
VGS(off) 夾斷電壓
也用Up表示,是指結型或耗盡型絕緣柵場(chǎng)效應管中,使漏源間剛截止時(shí)的柵極電壓。
RDS(on) 導通電阻
是指在特定的漏電流(通常為ID電流的一半)、柵源電壓和25℃的情況下測得的漏-源電阻。
RGS 柵源電阻
即在柵、源極之間加的電壓與柵極電流之比,這一特性有時(shí)以流過(guò)柵極的柵流表示MOS管的RGS能夠很容易地超越1010Ω。
IDSS 零柵壓漏極電流
也稱(chēng)為飽和漏源電流,是指在當柵源電壓VGS=0時(shí),在特定的漏源電壓下的漏源之間泄漏電流。既然泄漏電流隨著(zhù)溫度的增加而增大,IDSS在室溫和高溫下都有規定。漏電流造成的功耗可以用IDSS乘以漏源之間的電壓計算,通常這部分功耗可以忽略不計。
IGSS 柵源漏電流
是指在特定的柵源電壓情況下流過(guò)柵極的漏電流。

3、動(dòng)態(tài)電特性


圖片圖表18  動(dòng)態(tài)電特性及參數一覽表
Ciss 輸入電容
將漏源短接,用交流信號測得的柵極和源極之間的電容就是輸入電容。Ciss是由柵漏電容Cgd和柵源電容Cgs并聯(lián)而成,或者Ciss=Cgs+Cgd。當輸入電容充電致閾值電壓時(shí)器件才能開(kāi)啟,放電致一定值時(shí)器件才可以關(guān)斷。因此驅動(dòng)電路和Ciss對器件的開(kāi)啟和關(guān)斷延時(shí)有著(zhù)直接的影響。
Coss 輸出電容
將柵源短接,用交流信號測得的漏極和源極之間的電容就是輸出電容。Coss是由漏源電容Cds和柵漏電容Cgd并聯(lián)而成,或者Coss=Cds+Cgd,對于軟開(kāi)關(guān)的應用,Coss非常重要,因為它可能引起電路的諧振
Crss 反向傳輸電容
在源極接地的情況下,測得的漏極和柵極之間的電容為反向傳輸電容。反向傳輸電容等同于柵漏電容。Cres=Cgd,反向傳輸電容也常叫做米勒電容,對于開(kāi)關(guān)的上升和下降時(shí)間來(lái)說(shuō)是其中一個(gè)重要的參數,他還影響這關(guān)斷延時(shí)時(shí)間。電容隨著(zhù)漏源電壓的增加而減小,尤其是輸出電容和反向傳輸電容。
Eoss 輸出電容存儲能量
表示輸出電容Coss在MOS管存儲的能量大小。由于MOS管的輸出電容Coss有非常明顯的非線(xiàn)性特性,隨VDS電壓的變化而變化。所以如果Datasheet提供了這個(gè)參數,對于評估MOS管的開(kāi)關(guān)損耗很有幫助。并非所有的MOS管手冊中都會(huì )提供這個(gè)參數,事實(shí)上大部分Datasheet并不提供。
di/dt 電流上升率
該參數反應了MOSFET體二極管的反向恢復特性。因為二極管是雙極型器件,受到電荷存儲的影響,當二極管反向偏置時(shí),PN結儲存的電荷必須清除,上述參數正反映了這一特性。
圖片圖表19  寄生電容結構和電路示意圖
Qgs、Qgd和Qg(柵極電荷值
Qg柵極電荷值,也叫柵極總充電電量,反應存儲在端子間電容上的電荷,既然開(kāi)關(guān)的瞬間,電容上的電荷隨電壓的變化而變化,所以設計柵驅動(dòng)電路時(shí)經(jīng)常要考慮柵電荷的影響。
Qgs為從0電荷開(kāi)始到第一個(gè)拐點(diǎn)處,Qgd是從第一個(gè)拐點(diǎn)到第二個(gè)拐點(diǎn)之間部分(也叫做“米勒”電荷),Qg是從0點(diǎn)到VGS等于一個(gè)特定的驅動(dòng)電壓的部分。
圖片圖表20  Qgs、Qgd和Qg參數含義示意圖
漏電流和漏源電壓的變化對柵電荷值影響比較小,而且柵電荷不隨溫度的變化。測試條件是規定好的。柵電荷的曲線(xiàn)圖體現在數據表中,包括固定漏電流和變化漏源電壓情況下所對應的柵電荷變化曲線(xiàn)。在上圖中,平臺電壓VGS(pl)隨著(zhù)電流的增大增加的比較?。S著(zhù)電流的降低也會(huì )降低)。平臺電壓也正比于閾值電壓,所以不同的閾值電壓將會(huì )產(chǎn)生不同的平臺電壓。詳解見(jiàn)下圖:
圖片圖表21  Qgs、Qgd和Qg參數含義分解
td(on) 導通延時(shí)時(shí)間
是從當柵源電壓上升到10%柵驅動(dòng)電壓時(shí)到漏電流升到規定電流的90%時(shí)所經(jīng)歷的時(shí)間。
td(off) 關(guān)斷延時(shí)時(shí)間
是從當柵源電壓下降到90%柵驅動(dòng)電壓時(shí)到漏電流降至規定電流的10%時(shí)所經(jīng)歷的時(shí)間。這顯示電流傳輸到負載之前所經(jīng)歷的延遲。
Tr 上升時(shí)間
上升時(shí)間是漏極電流從10%上升到90%所經(jīng)歷的時(shí)間。
Tf 下降時(shí)間
下降時(shí)間是漏極電流從90%下降到10%所經(jīng)歷的時(shí)間。
NF 低頻噪聲系數
單位為分貝(dB),噪聲是由管子內部載流子運動(dòng)的不規則性所引起的,由于它的存在,可使放大器即便在沒(méi)有信號輸人時(shí),輸出端也會(huì )出現不規則的電壓或電流變化。噪聲系數NF數值越小,代表管子所產(chǎn)生的噪聲越小,場(chǎng)效應管的噪聲系數約為幾個(gè)分貝,比雙極性三極管的要小。
gM 跨導
是表示柵源電壓VGS對漏極電流ID的控制能力,即漏極電流ID變化量與柵源電壓VGS變化量的比值,是權衡場(chǎng)效應管放大才能的重要參數。

4、其他重要參數


除以上介紹的參數之外,MOS管還有很多重要的參數,明細如下:
圖片表22  MOS管其他重要參數列表
來(lái)源:硬門(mén)芯思


*博客內容為網(wǎng)友個(gè)人發(fā)布,僅代表博主個(gè)人觀(guān)點(diǎn),如有侵權請聯(lián)系工作人員刪除。



關(guān)鍵詞: MOS管

相關(guān)推薦

技術(shù)專(zhuān)區

關(guān)閉
国产精品自在自线亚洲|国产精品无圣光一区二区|国产日产欧洲无码视频|久久久一本精品99久久K精品66|欧美人与动牲交片免费播放
<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>