<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>
關(guān) 閉

新聞中心

EEPW首頁(yè) > 工控自動(dòng)化 > 設計應用 > 基于計算機視覺(jué)的移動(dòng)機器人導航

基于計算機視覺(jué)的移動(dòng)機器人導航

作者:趙瑜,種蘭祥,張萬(wàn)緒 時(shí)間:2008-11-21 來(lái)源:現代電子技術(shù) 收藏

  現代機器人技術(shù)在人工智能、計算機技術(shù)和傳感器技術(shù)的推動(dòng)下獲得了飛速發(fā)展,其中移動(dòng)機器人因具有可移動(dòng)性和自治能力,能適應環(huán)境變化被廣泛用于物流、探測、服務(wù)等領(lǐng)域。移動(dòng)機器人的核心技術(shù)之一是導航技術(shù),特別是自主導航技術(shù)。由于環(huán)境的動(dòng)態(tài)變化和不可預測性、機器人感知手段的不完備等原因,使得移動(dòng)機器人的導航難度較大,一直是人們研究的重點(diǎn)。

本文引用地址:http://dyxdggzs.com/article/89715.htm

  目前常用的一種導航方式是“跟隨路徑導引”,即機器人通過(guò)對能感知到某些外部的連續路徑參考信息做出相應的反應來(lái)導航。如在機器人運動(dòng)路徑上敷設金屬導線(xiàn)或磁釘,通過(guò)檢測金屬導線(xiàn)或磁釘的特征信息來(lái)確定機器人的位置。從導航的角度看,這種方法的優(yōu)點(diǎn)是可靠性較高,但功能單一,如不能在行進(jìn)的同時(shí)對目標進(jìn)行識別、避障,對環(huán)境的適應能力較弱、靈活性較差、維護成本較高,因此限制了其在移動(dòng)機器人中的應用。

  隨著(zhù)計算機技術(shù)、數字圖像處理技術(shù)及圖像處理硬件的發(fā)展,基于的導航方式在機器人導航中得到廣泛關(guān)注。在實(shí)際應用中,只需要在路面上畫(huà)出路徑引導線(xiàn),如同在公共交通道路上畫(huà)的引導線(xiàn)一樣,機器人就可以通過(guò)視覺(jué)進(jìn)行自主導航。相對于敷設金屬導線(xiàn)、磁釘等方法,這種方法增強了系統的靈活性,降低了維護成本。視覺(jué)信息中包含有大量的數據,要從中提取有用的信息,需要復雜的算法及耗時(shí)的計算。如何保證視覺(jué)導航系統在正確理解路徑信息的前提下仍具有較好的實(shí)時(shí)性和魯棒性,是該方法要解決的核心問(wèn)題。

1 視覺(jué)導航系統構成及工作過(guò)程

  基于的移動(dòng)機器人導航實(shí)驗系統的硬件部分由計算機、USB接口的攝像頭、LEGO實(shí)驗用機器人組成。軟件分為2部分,即圖像處理和機器人運動(dòng)控制?;谝曈X(jué)導航的原始輸入圖像是連續的數字視頻圖像。系統工作時(shí),圖像預處理模塊首先對原始的輸入圖像進(jìn)行縮小、邊緣檢測、二值化等預處理。其次利用哈夫變換提取出對機器人有用的路徑信息。最后,運動(dòng)控制模塊根據識別的路徑信息,調用直行或轉彎功能模塊使機器人做相應的移動(dòng)。整個(gè)工作流程如圖1所示。

1.1 視覺(jué)導航的圖像預處理

  目前圖像采集設備都具有較高的空間和灰度分辨率,精度高、數據量大。

  實(shí)驗中的原始輸入圖像是USB攝像頭采集320×240像素的RGB格式圖像,最大幀數30幀/s。

  圖像預處理的效果對后續哈夫變換檢測路徑信息的速度和準確性有很大影響。對整幅圖像進(jìn)行抽取時(shí)計算量過(guò)大、也無(wú)必要,故先將彩色圖像轉換為灰度圖像,再將圖像的大小依據最近鄰域插值法原理進(jìn)行縮小以節約后續計算時(shí)間。在實(shí)驗室環(huán)境下,經(jīng)測試,將原始圖像縮小到30%仍然能滿(mǎn)足需要,處理時(shí)間縮短了72%。

 

  由于圖像傳感器從時(shí)間和空間上對介質(zhì)(光)采樣,其圖像質(zhì)量對現場(chǎng)的非均勻光場(chǎng)和其他干擾因素非常敏感,二值化時(shí),不同光照條件下閾值的確定是一件比較困難的工作。目前常用的閾值選取方法有雙峰法、迭代法和最大類(lèi)間方差法。從執行時(shí)問(wèn)和處理效果2方面考慮,對3種方法比較后(結果如表1所示),在優(yōu)先考慮實(shí)時(shí)性的前提下,選用雙峰法來(lái)求取閾值。在實(shí)驗室條件下,路徑環(huán)境相對理想,黑色引導線(xiàn)與背景反差較大。在灰度直方圖上,引導線(xiàn)和背景都形成高峰,對這2個(gè)峰值及谷底的求取也可簡(jiǎn)化,使用灰度級的最大值和最小值代替2個(gè)峰值,那么這2個(gè)峰值的中間值即可作為谷底用作圖像的閾值。

 

  地面的反光和陰影,以及不均勻的光照都會(huì )導致同一幅圖像的二值化效果表現出很大差別,圖2和圖3是對同一幅圖像在不同光照條件下二值化的結果,可以看到在光照條件2下會(huì )出現大量的黑點(diǎn),這些黑點(diǎn)將嚴重影響提取路徑信息的速度并且可能導致錯誤的路徑信息。然而,相對于灰度、顏色特征,邊緣特征受光照影響較小。為此,對縮小后的圖像先進(jìn)行引導線(xiàn)的邊緣檢測,邊緣檢測后圖像中引導線(xiàn)邊緣像素灰度的對比度得到增強,通過(guò)實(shí)驗確定合適的閾值,然后對圖像進(jìn)行二值化以提取路徑信息。

 

1.2 引導線(xiàn)角度檢測

  采用哈夫變換檢測路徑引導線(xiàn)的角度。為了簡(jiǎn)單而又不失一般性,引導線(xiàn)分1條路徑和2條相交的路徑。當2條直線(xiàn)的夾角等于90°時(shí)即認為是兩條相互垂直的路徑。直線(xiàn)的哈夫變換利用如下直線(xiàn)的極坐標方程:

 

  式(1)中,(x,y)表示圖像空間xy中所有共線(xiàn)的點(diǎn)即圖像中的黑點(diǎn);θ表示直線(xiàn)法線(xiàn)和x軸的夾角,取值范圍為0~180°;λ表示直線(xiàn)到原點(diǎn)的距離。

2 視覺(jué)導航的機器人運動(dòng)控制

  機器人運動(dòng)控制部分分為直行控制和轉彎控制2部分。

2.1 直行控制

  如果哈夫變換的檢測結果表明是一條直線(xiàn)即機器人視野中只有1條主引導線(xiàn)時(shí),則運行直行模塊。實(shí)際中有2種情況需要考慮:一是機器人的初始位置不一定正對引導線(xiàn),二是在機器人的機電配置中,左右輪子的馬達運動(dòng)不會(huì )絕對精確和對稱(chēng)。這些會(huì )使機器人在運動(dòng)中出現側偏??刹捎孟率龇椒ㄟM(jìn)行直行控制:根據引導線(xiàn)在圖像平面坐標中的位置來(lái)判斷機器人的偏向。當引導線(xiàn)位于圖像平面的左半邊,說(shuō)明攝像頭的光軸與引導線(xiàn)不垂直且相對于引導線(xiàn)右偏,則命令機器人左轉;當引導線(xiàn)位于圖像平面的右半邊,說(shuō)明攝像頭的光軸與引導線(xiàn)不垂直且相對于引導線(xiàn)左偏,則命令機器人右轉;當引導線(xiàn)在圖像平面兩邊均存在時(shí),則命令機器人不偏轉繼續直行。機器人在前進(jìn)過(guò)程中,根據圖像平面中引導線(xiàn)位置不斷調整方位,以一定的轉動(dòng)角度(轉動(dòng)角度盡量小,這樣機器人的擺動(dòng)幅度就會(huì )小)在直線(xiàn)路徑上行走。

2.2 轉彎控制

  如果哈夫變換的檢測結果表明是兩條相互垂直的直線(xiàn),即機器人的視野中出現轉彎路口,則開(kāi)始運行轉彎模塊。

  機器人需要在距轉角合適的距離處開(kāi)始運行轉彎模塊,以保證機器人視野中始終具有引導線(xiàn)。如圖4所示,AB段表示攝像頭的縱向視野范圍,C點(diǎn)為轉角點(diǎn),機器人需要知道自身在實(shí)際二維平面中相對于轉角點(diǎn)C的距離即BC段距離。由圖像信息獲得現實(shí)世界坐標系中的參數,即所謂三維重建,這需要對基于的移動(dòng)機器人導航系統進(jìn)行攝像機標定。

  鑒于移動(dòng)機器人識別的引導線(xiàn)在地面上這一限制條件,并且攝像頭固定在機器人上,可以選擇機器人坐標系為世界坐標系,即世界坐標系與機器人同步移動(dòng)。坐標原點(diǎn)為標定模板的左下角標定點(diǎn)的中心,Zw軸垂直地面,XwYw平面即為地面。在該坐標系下地面目標的坐標可以表示為(Xw,Yw,0),標定模板由直徑5 mm、相距10 mm共72個(gè)圓點(diǎn)構成,如圖5所示。

 

  移動(dòng)機器人的攝像機標定問(wèn)題,如果忽略因物面與攝像機光軸不垂直造成的非線(xiàn)性,則可歸結為在二維世界坐標系中求變換矩陣M。

 

  世界坐標系(Xw,Yw,Zw),Zw軸垂直地面,XwYw平面即為地面,在該坐標系下地面目標的坐標P可以表示為(Xw,Yw,0)。式(2)中Xi,Yj(其中i=1,2,…,n,j=1,2,…,n)即為地面目標的坐標(Xw,Yw)。只要有4個(gè)標定點(diǎn)就可以求解該線(xiàn)性方程組,分別測得其在地面上的坐標(Xw,Yw,0),再根據由圖像處理的方法得到的圖像坐標系中的像素坐標(ui,vj)(其中i=1,2,…,n,j=1,2,…,n),即可求得變換矩陣M,M=[m11,m12,m14,m21,m22,m24,m31,m32]T,其中m34=1。變換矩陣M的元素取值受到攝像頭俯仰角和架設高度的影響。在實(shí)驗室條件下,本系統選取BC=13 cm時(shí)開(kāi)始運行轉彎模塊。

  在單目視覺(jué)的條件下,對于固定的俯仰角,為保證道路引導線(xiàn)不移出攝像頭視野范圍,必須控制機器人以一定的弧度轉彎,即沿弧線(xiàn)路徑執行轉彎模塊。要做到這一點(diǎn),弧線(xiàn)的弧度必須選取合適。在轉彎過(guò)程中需要根據機器人的位置不斷調整機器人的運動(dòng)速度和轉動(dòng)角度,具體過(guò)程如下:

  (1)找出圖像中最后一行中點(diǎn)m的像素坐標(um,vm),即攝像頭視野最下方的中點(diǎn),通過(guò)變換矩陣M將其轉換為世界坐標系xyz中的位置(xm,ym),z軸垂直于xy平面即地面。

  (2)找出圖像中轉角點(diǎn)t的像素坐標(ut,vt),通過(guò)變換矩陣M求出其在世界坐標系xyz中的位置(xt,yt)。

  (3)以地面上轉角點(diǎn)為圓心的世界坐標系定義為XYZ,Z軸垂直于XY平面即地面,求出弧線(xiàn)在此坐標系中的方程,(x-a)2+(y-b)2=r2(a,b)表示在坐標系XYZ下弧線(xiàn)所在圓的圓心,r表示圓的半徑。

  (4)將xyz坐標系下的坐標點(diǎn)(xm,ym)轉換到XYZ坐標系下,用坐標(Xm,Ym)表示,如圖6所示。X軸與x的夾角為θ,XOY坐標系的原點(diǎn)O即為轉角點(diǎn)t,則:

 

  (5)弧線(xiàn)方程中當y=Ym時(shí),求得X,比較x與Xm,若Xm-x>0,則命令機器人左轉;若Xm-x<0,則命令機器人右轉,否則直行。

  本系統確定轉彎弧的半徑為20 cm,弧度為90°的弧線(xiàn)即可使機器人順利轉彎,機器人視野中始終保持引導線(xiàn)。

3 實(shí)驗結果及結論

  實(shí)驗中選用的LEGO移動(dòng)機器人,其運動(dòng)速度為8.57 cm/s(指令設定Power=25 RPM)。導航場(chǎng)地中畫(huà)有寬1 cm的黑色引導線(xiàn),實(shí)驗要求中機器人完全根據引導線(xiàn)自主運動(dòng)。實(shí)驗中,識別1幀圖像并且機器人根據識別的路徑信息運行直行或轉彎模塊共需0.311 s,即機器人每處理1幀圖像移動(dòng)2.67 cm。實(shí)驗室中的光照條件是機器人移動(dòng)時(shí)的主要干擾,而銳利的引導線(xiàn)邊緣受光照影響較小,對這些干擾有較好的濾除作用。經(jīng)過(guò)在陰天白天、晴天白天以及開(kāi)燈和不開(kāi)燈的情況下、晚上開(kāi)燈的情況下、遮蓋物位于攝像頭上方50 cm處形成陰影情況下,機器人能正確的沿引導線(xiàn)移動(dòng)。同時(shí),當攝像頭視野范圍內引導線(xiàn)消失即認為出現障礙物,機器人能發(fā)出前方有障礙物的報警信息。

  可見(jiàn)上面所述方法有較好的實(shí)時(shí)性和魯棒性有一定的通用性,使得該視覺(jué)導航方法具有一定的應用價(jià)值。只要光照條件變化不是非常劇烈,在工廠(chǎng)、醫院、辦公樓等環(huán)境中,機器人根據路徑引導線(xiàn)可自主到達目的地。

  當然,由于移動(dòng)機器人活動(dòng)場(chǎng)景的復雜性和動(dòng)態(tài)特性,以及視覺(jué)處理的復雜性,視覺(jué)導航還有很多需要解決的問(wèn)題,例如當導航場(chǎng)地出現較大面積的強烈反光、極暗的陰影時(shí)能否有效可靠的進(jìn)行移動(dòng)機器人的導航控制,這需要進(jìn)一步研究。另外,如何將視覺(jué)系統與本系統機器人平臺中的超聲波傳感器、光電傳感器及聲音傳感器在空間、時(shí)間及數據上進(jìn)行融合以提高系統的適應性和環(huán)境識別能力也是一個(gè)研究方向。

 

攝像頭相關(guān)文章:攝像頭原理


關(guān)鍵詞: 計算機視覺(jué)

評論


相關(guān)推薦

技術(shù)專(zhuān)區

關(guān)閉
国产精品自在自线亚洲|国产精品无圣光一区二区|国产日产欧洲无码视频|久久久一本精品99久久K精品66|欧美人与动牲交片免费播放
<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>