OLED關(guān)鍵工藝
氧化銦錫(ITO)基板前處理
本文引用地址:http://dyxdggzs.com/article/200630.htm(1)ITO表面平整度
ITO目前已廣泛應用在商業(yè)化的顯示器面板制造,其具有高透射率、低電阻率及高功函數等優(yōu)點(diǎn)。一般而言,利用射頻濺鍍法(RF sputtering)所制造的ITO,易受工藝控制因素不良而導致表面不平整,進(jìn)而產(chǎn)生表面的尖端物質(zhì)或突起物。另外高溫鍛燒及再結晶的過(guò)程亦會(huì )產(chǎn)生表面約10 ~ 30nm的突起層。這些不平整層的細粒之間所形成的路徑會(huì )提供空穴直接射向陰極的機會(huì ),而這些錯綜復雜的路徑會(huì )使漏電流增加。一般有三個(gè)方法可以解決這表面層的影響?U一是增加空穴注入層及空穴傳輸層的厚度以降低漏電流,此方法多用于PLED及空穴層較厚的OLED(~200nm)。二是將ITO玻璃再處理,使表面光滑。三是使用其它鍍膜方法使表面平整度更好。
(2) ITO功函數的增加
當空穴由ITO注入HIL時(shí),過(guò)大的位能差會(huì )產(chǎn)生蕭基能障,使得空穴不易注入,因此如何降低 ITO / HIL接口的位能差則成為ITO前處理的重點(diǎn)。一般我們使用O2-Plasma方式增加ITO中氧原子的飽和度,以達到增加功函數之目的。ITO經(jīng)O2- Plasma處理后功函數可由原先之4.8eV提升至5.2eV,與HIL的功函數已非常接近。
加入輔助電極,由于OLED為電流驅動(dòng)組件,當外部線(xiàn)路過(guò)長(cháng)或過(guò)細時(shí),于外部電路將會(huì )造成嚴重之電壓梯度,使真正落于OLED組件之電壓下降,導致面板發(fā)光強度減少。由于ITO電阻過(guò)大(10 ohm / square),易造成不必要之外部功率消耗,增加一輔助電極以降低電壓梯度成了增加發(fā)光效率、減少驅動(dòng)電壓的快捷方式。鉻(Cr:Chromium)金屬是最常被用作輔助電極的材料,它具有對環(huán)境因子穩定性佳及對蝕刻液有較大的選擇性等優(yōu)點(diǎn)。然而它的電阻值在膜層為100nm時(shí)為2 ohm / square,在某些應用時(shí)仍屬過(guò)大,因此在相同厚度時(shí)擁有較低電阻值的鋁(Al:Aluminum)金屬(0.2 ohm / square)則成為輔助電極另一較佳選擇。但是,鋁金屬的高活性也使其有信賴(lài)性方面之問(wèn)題因此,多疊層之輔助金屬則被提出,如:Cr / Al / Cr或Mo / Al / Mo,然而此類(lèi)工藝增加復雜度及成本,故輔助電極材料的選擇成為OLED工藝中的重點(diǎn)之一。
陰極工藝
在高解析的OLED面板中,將細微的陰極與陰極之間隔離,一般所用的方法為蘑菇構型法 (Mushroom structure approach),此工藝類(lèi)似印刷技術(shù)的負光阻顯影技術(shù)。在負光阻顯影過(guò)程中,許多工藝上的變異因子會(huì )影響陰極的品質(zhì)及良率。例如,體電阻、介電常數、高分辨率、高Tg、低臨界維度(CD)的損失以及與ITO或其它有機層適當的黏著(zhù)接口等。
封裝
(1)吸水材料
一般OLED的生命周期易受周?chē)畾馀c氧氣所影響而降低。水氣來(lái)源主要分為兩種:一是經(jīng)由外在環(huán)境滲透進(jìn)入組件內,另一種是在OLED工藝中被每一層物質(zhì)所吸收的水氣。為了減少水氣進(jìn)入組件或排除由工藝中所吸附的水氣,一般最常使用的物質(zhì)為吸水材 (Desiccant)。Desiccant可以利用化學(xué)吸附或物理吸附的方式捕捉自由移動(dòng)的水分子,以達到去除組件內水氣的目的。
(2)工藝及設備開(kāi)發(fā)
封裝工藝之流程如圖四所示,為了將Desiccant置于蓋板及順利將蓋板與基板黏合,需在真空環(huán)境或將腔體充入不活潑氣體下進(jìn)行,例如氮氣。值得注意的是,如何讓蓋板與基板這兩部分工藝銜接更有效率、減少封裝工藝成本以及減少封裝時(shí)間以達最佳量產(chǎn)速率,已儼然成為封裝工藝及設備技術(shù)發(fā)展的3大主要目標。
評論