LTE發(fā)射機設計的復雜測量技術(shù)問(wèn)題詳解
現代無(wú)線(xiàn)服務(wù)提供商正致力于不斷擴大帶寬,為更多用戶(hù)提供互聯(lián)網(wǎng)協(xié)議(IP)服務(wù)。長(cháng)期演進(jìn)技術(shù)(LTE)是新一代蜂窩技術(shù),能夠增強當前部署的3GPP網(wǎng)絡(luò )并創(chuàng )造重要的新業(yè)務(wù)機會(huì ),從而滿(mǎn)足上述需求。LTE的體系結構復雜而且還在不斷演進(jìn),這為網(wǎng)絡(luò )和用戶(hù)設備的設計與測試帶來(lái)了新的挑戰。其中,在空中接口上的一個(gè)關(guān)鍵挑戰就是如何在信號傳輸過(guò)程中進(jìn)行功率管理。
本文引用地址:http://dyxdggzs.com/article/192850.htm在LTE等數字通信系統中,發(fā)射信號泄漏到鄰近信道的功率可能會(huì )對鄰近信道中的信號傳輸產(chǎn)生干擾,進(jìn)而影響系統性能。相鄰信道泄漏功率比(ACLR)測試可以驗證系統發(fā)射機的工作性能是否符合規定的限制。鑒于LTE技術(shù)的復雜性,快速和精確地執行這種關(guān)鍵測試對于測試人員來(lái)說(shuō)可能充滿(mǎn)挑戰性(見(jiàn)表1)。裝有LTE特定信號生成軟件的信號發(fā)生器、裝有LTE特定測量軟件的現代化信號分析儀,以及針對該分析儀優(yōu)化的方法,可以幫助測試人員戰勝這一挑戰。
了解ACLR測試要求
ACLR是LTE射頻發(fā)射機一致性測試中的一個(gè)重要的發(fā)射機特性。這些測試的目的是驗證被測件是否達到了基站(eNB)和用戶(hù)設備(UE)中的最低要求。大部分針對帶外發(fā)射的LTE一致性測試與在范圍和目的上與針對WCDMA的一致性測試類(lèi)似。但是WCDMA指定了使用根余弦(RRC)濾波器進(jìn)行發(fā)射機測量,而標準并沒(méi)有為L(cháng)TE定義等效的濾波器。因此,LTE發(fā)射機測試可以使用不同的濾波器來(lái)優(yōu)化信道帶內性能,改善誤差矢量幅度;或優(yōu)化信道帶外性能,獲得更出色的鄰近信道功率特性。
鑒于在測試發(fā)射機性能中可以使用的復雜發(fā)射機配置有很多,LTE指定了一系列下行鏈路信號配置來(lái)測試eNB.這些配置稱(chēng)為E-UTRA測試模型(E-TM)。它們可分為三大類(lèi):E-TM1、E-TM2和E-TM3.第一類(lèi)和第三類(lèi)可再細分為E-TM1.1、E- TM1.2、E-TM3.1、E-TM3.2和E-TM3.3.注:E-UTRA中的“E”源自“enhanced(增強型)”,指LTE UMTS陸地無(wú)線(xiàn)接入;而單獨的UTRA是指WCDMA.
ACLR測試要求會(huì )有所不同,這取決于發(fā)射機測試是在UE還是在eNB上進(jìn)行。在UE上進(jìn)行的ACLR測試不像在eNB上進(jìn)行那樣要求嚴格。發(fā)射機測試使用規定用于eNB接收機測試的參考測量信道(RMC)來(lái)執行。
3GPP LTE規范關(guān)于A(yíng)CLR的定義是,以指定信道頻率為中心的濾波后平均功率與以鄰近信道頻率為中心的濾波后平均功率之比。eNB的最低ACLR一致性要求分為兩種情景指定:相同帶寬的鄰近E-UTRA信道載波(E-UTRAACLR1);UTRA鄰近和相間信道載波(分別是UTRAACLR1和UTRAACLR2)。
針對E-UTRA和UTRA鄰近信道規定了不同的限制和測量濾波器,用于成對頻譜(FDD)和非成對頻譜(TDD)工作。E-UTRA信道使用平方測量濾波器進(jìn)行測量,而UTRA信道使用滾降因子為0.22、帶寬等于碼片速率的RRC濾波器進(jìn)行測量。
戰勝ACLR測量挑戰
鑒于LTE技術(shù)的復雜性和用于測試發(fā)射機性能的發(fā)射機配置復雜性,符合標準的頻譜測量(例如ACLR)可能非常繁瑣。幸運的是,高級信號測評工具的出現使工程師們能夠快速、精確地進(jìn)行這些LTE測量。功率測量(包括ACLR)通常使用頻譜分析儀或信號分析儀來(lái)進(jìn)行,而要求的測試信號使用信號發(fā)生器生成。
為了更好地說(shuō)明如何使用這些儀器,請設想以下情景:根據規范,載波頻率必須設置在被測基站所支持的頻段內,按照成對頻譜FDD工作或非成對頻譜TDD工作時(shí)的規定,通過(guò)測量信道頻率兩側的頻偏的ACLR.首先使用E-TM1.1發(fā)射信號進(jìn)行測試,其中所有PDSCH資源塊都具有相同的功率。然后使用E- TM1.2信號(增加和減少功率)進(jìn)行測試。E-TM1.2配置非常有用,因為它能夠仿真多個(gè)用戶(hù)(其設備工作在不同功率上)。這一情景的結果是波峰因數更高,導致在不產(chǎn)生額外無(wú)效頻譜內容(例如ACLR)的情況下放大信號變得更加困難。
本例中,Agilent Signal Studio for LTE與Agilent MXG信號發(fā)生器相連,生成頻率設為2.11GHz且符合標準的E-TM1.2測試信號。輸出信號幅度DD決定ACLR性能的重要考慮因素DD設為-10dBm.在從1.4擴展到20MHz的帶寬范圍內選擇5MHz信道帶寬。
圖1為已選定傳輸信道(Transport Channel)的eNB設置。底部為測試信號的資源分配塊圖。信道1和2是要進(jìn)行測量的信道,它們共享下行鏈路。

圖1:此處顯示了E-TM1.2測試信號的資源分配塊(底部)。Y軸表示頻率或資源塊,X軸表示時(shí)隙或時(shí)間,白色區域表示信道1,粉紅色區域表示信道2,其它顏色表示同步信道、參考信號等。
信道1的輸出功率電平為-4.3dB.因此,其信道功率已經(jīng)進(jìn)行過(guò)降低。信道2的輸出功率已經(jīng)進(jìn)行過(guò)增加,設置為3dB.對于資源塊分配圖中的不同資源塊,可以設置復雜的功率增加和降低選項。與所有資源塊都處于同一功率級的單個(gè)信道相比,得到的復合信號具有更高的峰均比。放大此類(lèi)功率增加的信號可能非常困難。功率放大器中沒(méi)有足夠的功率回退(back-off),可能導致限幅。
隨后,可以使用在A(yíng)gilent X系列信號分析儀上運行的Signal Studio軟件生成測試信號。生成信號之后,通過(guò)LAN或GPIB將波形下載到信號發(fā)生器。將信號發(fā)生器的射頻輸出端連接到信號分析儀的射頻輸入端,使用掃描頻譜分析測量ACLR性能。在此例中,信號分析儀處于LTE模式,中心頻率為2.11GHz,選擇了ACP測量。隨后,通過(guò)從LTE應用程序中的一系列可用選項中(例如成對或非成對頻譜、鄰近信道和相間信道中的載波類(lèi)型等選項),調用適當的參數和測試限制,根據LTE標準進(jìn)行快速一鍵式ACLR測量。
對于FDD測量,LTE定義了兩種ACLR測量方法:一種是在中心頻率和偏置頻率上使用E-UTRA(LTE);另一種是在中心頻率上使用LTE,在鄰近和相間的偏置頻率上使用UTRA(WCDMA)。圖2顯示了E-UTRA鄰近和相間頻偏信道的ACLR測量結果。對于此次測量,選擇5MHz載波,由于下行鏈路有301個(gè)子載波,所以測量噪聲帶寬為4.515MHz.

評論