<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>
關(guān) 閉

新聞中心

EEPW首頁(yè) > 工控自動(dòng)化 > 設計應用 > 基于鏡像奇異值分解的單樣本人臉識別

基于鏡像奇異值分解的單樣本人臉識別

作者: 時(shí)間:2010-10-22 來(lái)源:網(wǎng)絡(luò ) 收藏

自20世紀90年代以來(lái),技術(shù)已成為計算機視覺(jué)、模式和信息技術(shù)等領(lǐng)域研究的熱點(diǎn)課題之一,并且在此基礎上提出了主成分分析PCA(Principal Component Analysis)[1,2]、二維主成分分析2DPCA(Two-Dimensional Principal Component Analysis)[3]、雙方向的二維主成分分析[4]和線(xiàn)性鑒別分析LDA(Linear Discriminant Analysis)[5]等有效的方法。但是,現有的正面圖像的識別方法,僅當有充分數量的有代表性的圖像時(shí)才能取得較好的識別效果。然而在一些特殊場(chǎng)合,如法律實(shí)施、海關(guān)護照驗證和身份證驗證等,每類(lèi)(人)只能得到一幅圖像,此時(shí)就只能用這些數目有限的圖像去訓練人臉識別系統。若用前面提到的那些方法處理這種訓練數目有限的人臉識別系統,識別率會(huì )明顯下降,甚至變得不再適用。參考文獻[6]首先對原始人臉圖像利用,然后運用得到的較大的幾個(gè)值對原始人臉圖像近似重構,并且將重構人臉圖像和原始圖像一起作為訓練,從而對原訓練樣本個(gè)數進(jìn)行擴展,再對增加了訓練樣本后的樣本集運用2DPCA方法進(jìn)行特征抽取,該方法可取得較好的識別效果。但是由于人臉圖像存在姿態(tài)、表情等變化,而且這個(gè)變化越大,算法的識別誤差也越大。此,本文提出了一種圖像鏡像和的鏡像奇異值分解方法。該方法首先對人臉圖像做鏡像變換,然后對原始人臉圖像和鏡像圖像分別做奇異值分解,接著(zhù)用較大的幾個(gè)奇異值分別對原人臉圖像重構,將這些重構圖像、原圖像以及鏡像圖像一起作為訓練樣本運用(2D)2PCA方法對其進(jìn)行特征抽取,最后使用最小歐氏距離的分類(lèi)方法對樣本集進(jìn)行分類(lèi)識別。由于考慮了人臉圖像的旋轉等姿態(tài)變化,在ORL人臉數據庫上的實(shí)驗結果表明,該方法比參考文獻[6]中的方法有更好的識別性能。
1 方法的思想與實(shí)現
1.1 鏡像人臉圖像生成

增加鏡像圖像可以部分消除由于頭部的旋轉對人臉識別造成的影響,而且人臉圖像是基本對稱(chēng)的[7],則此時(shí)可以考慮將原始人臉圖像A以其垂直中心軸由式(1)作鏡像變換,從而對原始訓練人臉圖像的個(gè)數進(jìn)行擴展。
A1=A×M (1)
其中,M為反對角線(xiàn)元素為1、其余元素為0的方陣。
1.2 基于奇異值分解的人臉表示


上一頁(yè) 1 2 3 下一頁(yè)

關(guān)鍵詞: 人臉 識別 樣本 分解 奇異 基于

評論


相關(guān)推薦

技術(shù)專(zhuān)區

關(guān)閉
国产精品自在自线亚洲|国产精品无圣光一区二区|国产日产欧洲无码视频|久久久一本精品99久久K精品66|欧美人与动牲交片免费播放
<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>