電子標簽識讀終端的研究與設計
電子標簽和識讀終端是構成射頻識別系統的基本條件。本文對低頻電子標簽與識讀終端之間的作用基理進(jìn)行了研究分析,據此提出了以基站芯片EM4095為射頻接口的識讀終端硬件設計,并對解碼程序設計中的關(guān)鍵問(wèn)題進(jìn)行了具體論述。
本文引用地址:http://dyxdggzs.com/article/78791.htm1 引言
射頻識別(RFID)是利用無(wú)線(xiàn)方式對電子數據載體(電子標簽)進(jìn)行識別的一種新興技術(shù)。與接觸式Ic卡和條形碼識別等系統比較,它有著(zhù)巨大的優(yōu)勢。利用射頻識別技術(shù),能有效實(shí)現對數量大、分布區域廣的信息進(jìn)行智能化管理,達到高效快捷運作的目的,特別是在物流、交通航運、自動(dòng)收費、服務(wù)領(lǐng)域等方面有著(zhù)廣泛的應用前景。
針對工作頻率為100kHz一150kHz的電子標簽EM4100.本文提出了其識讀終端的設計。
2 無(wú)源射頻芯片EM4100工作基理
EM4100系列為微型低功耗電子標簽芯片,工作頻率范圍為100kHz~ 150kHz,主時(shí)鐘及工作電源取自識讀器發(fā)射的信號。作為接收天線(xiàn)的線(xiàn)圈和微芯片已連好并封裝在一起。內部電路分模擬模塊和數字模塊2大部分。模擬模塊包括:全波整流電路,時(shí)鐘提電路,調制電路;數字模塊包括:
序列發(fā)生器,只讀存貯器.數據編碼器。
無(wú)源電子標簽與識讀器之間的作用距離滿(mǎn)足關(guān)系r<<λ(工作波長(cháng)),根據天線(xiàn)理論,屬于天線(xiàn)近區場(chǎng)(即感應場(chǎng))。因此,電子標簽天線(xiàn)與識讀終端天線(xiàn)之間的作用是基于電磁感應原理,等效電路見(jiàn)圖1。其中,Ll為識讀器發(fā)射天線(xiàn)電感,L2為電子標簽線(xiàn)圈電感,R2為電子標簽線(xiàn)圈的內阻,R L為電子標簽諧振回路的等效負載。

互感M在 L2上產(chǎn)生的電壓 作為 L2回路的信號源,由等效電路可推得回路的輸出電壓表達式:

在其他因素不變時(shí),若識讀終端發(fā)射的信號頻率與該諧振電路的諧振頻率(

) 相等,則輸出電壓最大;偏離諧振頻率時(shí),電壓將快速減小。諧振信號經(jīng)整流濾波后作為片工作電源,當該電壓值達到EM4100的要求時(shí),芯片啟動(dòng)工作。該諧振電路的輸出電壓值取決于Q值、交變磁場(chǎng)強度及頻率。顯然,電子標簽與識讀終端之間的距離直接影響該電壓值。
在時(shí)鐘提取電路從線(xiàn)圈感應信號提取的主時(shí)鐘作用下,序列發(fā)生器發(fā)出存儲器尋址、數據串行輸出控制、數據編碼控制等信號。芯片內存貯有唯一的64bit代碼:9bit起始位、40bit信息位、14bit校驗位、lbit停止位。代碼經(jīng)編碼后控制調制器中的電流開(kāi)關(guān).實(shí)現對f0=125kHz載波進(jìn)行調幅。每bit數據的時(shí)間寬度與載波周期的比率有3種選擇:64、32、16。數據信號控制應答器天線(xiàn)負載的接通和斷開(kāi).識讀器天線(xiàn)上電壓將跟隨變化,實(shí)際是應答器(電子標簽)數據對識讀器天線(xiàn)電壓進(jìn)行振幅調制,實(shí)現了應答器數據向識讀器的傳輸。這就是所謂的負載調制。在識讀終端有效作用范圍內,電子標簽循環(huán)發(fā)送64bit代碼數據,實(shí)現數據向識讀終端的傳送。
3 識讀終端硬件系統設計
3.1功能分析
根據上述識讀終端與無(wú)源電子標簽作用過(guò)程.識讀終端應實(shí)現以下功能:1.發(fā)射射頻信號。信號頻率應等于電子標簽接收回路的諧振頻率,信號有足夠的強度.以啟動(dòng)電子標簽工作并滿(mǎn)足對作用距離的要求。2.接收電子標簽發(fā)射的射頻信號,并解調出其中的數據。3.數據解碼及后續處理。終端硬件系統實(shí)現前2項功能,第3項功能由識讀終端軟件系統實(shí)現。
3.2射頻接口電路設計與實(shí)現
射頻接口電路實(shí)現啟動(dòng)電子標簽和信號解調。系統采用RFID專(zhuān)用無(wú)線(xiàn)基站芯片EM4095設計了電子標簽與識讀終端主控模塊之間的射頻接口電路。EM4095功能原理見(jiàn)圖2。

EM4095兼容多種傳輸協(xié)議(如EM4OOX、EM4150等),利用內部鎖相環(huán)PLL就可得到與天線(xiàn)適合的諧振頻率,而不需外接晶振,工作頻率100kHz一150kHz,具有睡眠模式,與微控制器的接口簡(jiǎn)單,采用調幅同步解調技術(shù),工作電壓5V。芯片T作受輸入信號SHD和MOD控制。MOD=0時(shí)。芯片工作于只讀模式。
SHD=I時(shí),為睡眠模式。芯片供電之后,SHD應先為高電平,以對芯片進(jìn)行初始化,然后再接低電平,芯片即發(fā)射射頻信號;同時(shí)。解調模塊將天線(xiàn)上AM信號中攜帶的數字信號取出,并由DEMOD— 0UT端輸出。RDY/CLK端向微控制器提供芯片內部的狀態(tài)以及與發(fā)射信號同步的參考時(shí)鐘。SHD=I時(shí),RDY/CLK端輸出低電平;SHD由高電平變?yōu)榈碗娖胶?,?jīng)過(guò)約35ms,RDY/CLK端輸出同步時(shí)鐘信號,該參考時(shí)鐘信號的出現表示發(fā)射模塊和接收模塊已經(jīng)啟動(dòng)。通過(guò)查詢(xún)RDY/CLK端信號狀態(tài),微控制器即可確定從DEMOD—OUT端接收數據的時(shí)刻。
鎖相環(huán)PLL、天線(xiàn)驅動(dòng)器、調制器組成射頻信號發(fā)送模塊。其中PLL由環(huán)路濾波器、相位比較器、壓控制振蕩器組成。天線(xiàn)線(xiàn)圈接收的信號通過(guò)耦合電容輸入DEMOD IN端,該信號與天線(xiàn)驅動(dòng)器的輸入信號由相位比較器進(jìn)行相位比較,形成與相位差對應的電壓,作為壓控振蕩器的控制信號,最終實(shí)現對天線(xiàn)發(fā)射信號頻率的鎖定。
接收模塊由采樣保持器、濾波器、比較器組成。DE—MOD IN端輸入的AM信號在VCO輸出信號的同步控制下被采樣,采樣輸出信號由端腳CDEC外接的電容隔離直和帶通濾波采樣(消除輸出中的載頻成分、高頻和低頻噪聲)后,經(jīng)異步比較得到對應的數字信號。

3,3 主控模塊
微控制器負責啟動(dòng)EM4095并接收由EM4095解調的編碼數據。采用AT89C52作為微控制器,其內部集成了8KB的Flash程序存貯器,256B的RAM, 具有低功耗工作模式。EM4095的DEMOD OUT端接P1.0,EM4095的SHD接P1.1EM4095輸出的參考時(shí)鐘信號RDY/CLK端接TO,用作解碼的同步時(shí)鐘。AT89C52從電子標簽讀取來(lái)的編碼數據存貯在EEPROM芯片 AT24C64中??伤就ㄟ^(guò) MAX232進(jìn)行電平轉換,實(shí)現與上位機的通信。識讀終端硬件原理見(jiàn)圖3。

AT89C52通過(guò)P1.1發(fā)出控制信號啟動(dòng)EM4095工作,若有效作用范圍內有電子標簽。電子標簽接收EM4095發(fā)射的射頻信號能量后發(fā)送經(jīng)過(guò)調制的編碼信號,AT89C52通過(guò)監測P1.0的狀態(tài),判斷是否收到射頻接口解調輸出的數據,由軟件完成數據的接收及后續的處理任務(wù)。
4 軟件設計分析
終端軟件要解決的關(guān)鍵問(wèn)題是如何正確接收數據,并解碼。本系統選用的電子標簽為Manchester碼型,電子標簽編碼器輸出信號、EM4095解調輸出信號的波形見(jiàn)圖4。

4.1解調輸出波特點(diǎn)
電子標簽中的64bit數據以NRZ形式的波形串行送人編碼器,經(jīng)編碼后輸出Manchester碼波形。其編碼規則為:在一個(gè)編碼時(shí)鐘周期的中間以一個(gè)上跳變的波形表示二進(jìn)制數據“1”:在一個(gè)編碼時(shí)鐘周期的中間以一個(gè)下跳變的波形表示二進(jìn)制數據“0”。
編碼輸出信號作負載調制的控制信號,編碼輸出波形中的低電平使標簽發(fā)射天線(xiàn)線(xiàn)圈工作于高電流,編碼輸出波形中的高電平則使標簽發(fā)射天線(xiàn)線(xiàn)圈工作于低電流。因此,標簽發(fā)給EM4095的已調信號,經(jīng)解調輸出的波形與標簽編碼輸出的波形為反相關(guān)系,即:時(shí)鐘周期中間的下跳變表示二進(jìn)制數據“1”,時(shí)鐘周期中間的上跳變波形表示二進(jìn)制數據“0”。根據圖4的波形,連續“0”和連續“1”對應的波形是相似的,只是它們之間為反相關(guān)系。因此,如果簡(jiǎn)單地把上升沿或下降沿作為數據采樣時(shí)刻,會(huì )出現“0”譯為“1”或“1”譯為“0”的錯誤。
4.2解碼軟件設計思路
解碼程序要解決的主要問(wèn)題是如何防止“0”與“1”之間的倒譯。根據DEMOD OUT端輸出波形。若DEMOD OUT端連續輸出一個(gè)下跳變和一個(gè)上跳變,則肯定是解調輸出的數據。
只在以下2種情況會(huì )出現上跳變:數據“0”編碼周期的中間:相鄰數據都是“1”時(shí),它們波形中間也出現上跳變。但這2種情況存在如下差別:上跳沿與前一個(gè)下跳沿之間的低電平持續時(shí)間不同。若該低電平維持時(shí)間大于32個(gè)載波周期,則是數據“o”編碼周期中間時(shí)刻的上跳沿。因此,用指令查詢(xún)P1.o的電平,先找一個(gè)下跳變,找到后立刻啟動(dòng)T0對RDY/CLK參考時(shí)鐘計時(shí),接著(zhù)找到緊隨其后的上跳變,若此時(shí) 的計時(shí)時(shí)間大于32個(gè)載波周期,該上跳變位于數據“0”編碼周期中間時(shí)刻,該上跳變是接收數據的時(shí)間起點(diǎn)。由于每位數據對應波形中的高、低電平均為32個(gè)射頻載波周期,以上跳時(shí)刻為起點(diǎn)延40個(gè)載頻周期后接收第1個(gè)數據。然后重新啟動(dòng)計數器TO,RDY/CLK端輸出的參考時(shí)鐘周期等于射頻載波周期,數據編碼時(shí)鐘周期又固定為該參考時(shí)鐘周期的64倍,將Tn設置為每隔64個(gè)載波周期中斷1次,在Tn中斷服務(wù)程序中讀P1.0上的數據。
根據電子標簽中數據的結構,按上述接收方式首先找作為起始位的9個(gè)存在如下差別:上跳沿與前一個(gè)下跳沿之間的低電平持續時(shí)間不同。若該低電平維持時(shí)間大于32個(gè)載波周期,則是數據“o”編碼周期中間時(shí)刻的上跳沿。因此,用指令查詢(xún)P1.o的電平,先找一個(gè)下跳變,找到后立刻啟動(dòng)T0對RDY/CLK參考時(shí)鐘計時(shí),接著(zhù)找到緊隨其后的上跳變,若此時(shí) 的計時(shí)時(shí)間大于32個(gè)載波周期,該上跳變位于數據“0”編碼周期中間時(shí)刻,該上跳變是接收數據的時(shí)間起點(diǎn)。由于每位數據對應波形中的高、低電平均為32個(gè)射頻載波周期,以上跳時(shí)刻為起點(diǎn)延40個(gè)載頻周期后接收第1個(gè)數據。然后重新啟動(dòng)計數器TO,RDY/CLK端輸出的參考時(shí)鐘周期等于射頻載波周期,數據編碼時(shí)鐘周期又固定為該參考時(shí)鐘周期的64倍,將Tn設置為每隔64個(gè)載波周期中斷1次,在Tn中斷服務(wù)程序中讀P1.0上的數據。
根據電子標簽中數據的結構,按上述接收方式首先找作為起始位的9個(gè)“1”,找到后,按順序接收其余55bit數據,并按標簽中數據結構重新組織數據。然后通過(guò)奇校驗程序計算各段數據的奇校驗,再與接收到的奇校驗位進(jìn)行比較,判斷數據是否正確性。
5 結束語(yǔ)
無(wú)線(xiàn)射頻識別具有信息量大、高效便捷、安全的特點(diǎn),是自動(dòng)識別的主流技術(shù)。低成本、高可靠的便攜式電子標簽識讀終端的研究開(kāi)發(fā).有很大的實(shí)際意義。本文在研究分析系統作用原理及解調輸出波特征的基礎上,設計了硬件實(shí)現方案,并以射頻參考時(shí)鐘為參照,提出了一種解決Manchester碼倒譯問(wèn)題的軟件解碼方法。系統結構和成本合理,可靠性已得到試驗驗證.有較好的應用價(jià)值。
本文作者創(chuàng )新點(diǎn):充分利用工業(yè)通用單片機的豐富資源設計主控模塊,解決了系統便攜化和低成本難題;以射頻參考時(shí)鐘為參照的Manchester碼軟件解碼方法,提高了解碼的準確性.也使系統具有良好的功能擴充和升級能力。
參考文獻
[1]吳永祥.射頻識別(RFID)技術(shù)研究現狀
及發(fā)展展望[J].微計算機信息,2006,11-2:234—236
[2]胡建簧,何艷麗,閔吳.無(wú)源射頻電子標簽模擬前端的設計與分析[J].半導體學(xué)報,2006,27(6)
[3]Klaus Finkenzeller.射頻識別RFID技術(shù)[M].北京:電子工業(yè)出版社.2001.劉冬生,鄒雪城.高頻RFID讀寫(xiě)器射頻模擬前端的實(shí)現[J].半導體技術(shù),2006,31(9)
評論