<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>

新聞中心

EEPW首頁(yè) > 電源與新能源 > 設計應用 > OBC充電器中的SiC FET封裝小巧,功能強大

OBC充電器中的SiC FET封裝小巧,功能強大

作者: 時(shí)間:2023-03-23 來(lái)源:Qorvo 收藏

EV 車(chē)載充電器和表貼器件中的半導體電源開(kāi)關(guān)在使用 FET 時(shí),可實(shí)現高達數萬(wàn)瓦特的功率。我們將了解一些性能指標。

本文引用地址:http://dyxdggzs.com/article/202303/444806.htm


引言


在功率水平為 22kW 及以上的所有級別電動(dòng)汽車(chē) (EV) 車(chē)載充電器半導體開(kāi)關(guān)領(lǐng)域,碳化硅 () MOSFET 占據明顯的優(yōu)勢。United(如今為 )SiC FET 具有獨特的 Si MOSFET 和 SiC JFET 級聯(lián)結構,其效率高于 IGBT,且比超結 MOSFET 更具吸引力。不過(guò),這不僅關(guān)乎轉換系統的整體損耗。對于 EV 車(chē)主來(lái)說(shuō),成本、尺寸和重量也是很重要的因素。


設計人員可以選擇在 EV 車(chē)載充電器中使用不同封裝類(lèi)型的半導體電源開(kāi)關(guān),包括使用 SiC FET 時(shí),可實(shí)現高達數萬(wàn)瓦特功率的表貼器件。在本博客文章中,我們將探討 SiC FET 的一些性能指標。


18.jpg


充電器中的 SiC FET


在 EV 的典型功率水平下,即使效率超過(guò) 98%,車(chē)載充電器在高溫環(huán)境下也需要耗散數百瓦特的電量。因此,我們需要進(jìn)行散熱,并通常采用液體冷卻實(shí)現。如何將開(kāi)關(guān)連接至該散熱裝置,優(yōu)化熱傳遞、提高良品率和降低裝配成本,是一個(gè)主要的設計考慮因素。SiC FET 通常采用具有出色熱性能(結點(diǎn)到冷卻液的熱阻約為1.0°C/W)的 TO-247-4L 封裝,同時(shí)使用 UnitedSiC(如今為 )的晶圓減薄技術(shù)、銀燒結芯片和陶瓷隔離器焊盤(pán)。然而,TO-247-4L 封裝也存在缺點(diǎn),它需要進(jìn)行機械固定和通孔焊接。該封裝還具有顯著(zhù)的封裝電感和受限的爬電距離,其引腳之間還存在一定間隙。此外,該封裝的 PCB 焊盤(pán)間距較小,除非導線(xiàn)采用復雜且成本較高的方式進(jìn)行  “嚙合”。


1679482380585884.png

表 1:D2PAK-7L 和 TO-247-4L 進(jìn)行比較。


表貼替代產(chǎn)品看似具有吸引力,但在 22kW 功率水平下如何?實(shí)際上,使用 UnitedSiC(如今的 )D2PAK-7L 器件是可行的,對性能幾乎沒(méi)有影響,具體取決于功率轉換級。通過(guò)查看上述表 1 中封裝類(lèi)型之間的主要差異,我們可以了解到,除了芯片安裝面積之外,D2PAK-7L 在其他方面均優(yōu)于 TO-247-4L。對于焊接在絕緣金屬基板上的 18 毫歐器件,D2PAK-7L 的芯片安裝面積導致其結點(diǎn)到冷卻液的整體熱阻約為 1.3℃/W,相比于 TO-247-4L 封裝,高 30% 左右。


在功耗給定且其他條件相同的情況下,熱阻越高,結溫就越高,但由于使用SMT 器件可以節省大量組裝空間,可能還可以使用電阻更低的部件,這樣就可以降低溫度。但是,如果只使用一個(gè) SMT 器件來(lái)滿(mǎn)足熱限制要求,Tj 就會(huì )變得非常高,所以將 SMT 器件并聯(lián)是一個(gè)可行的解決方案。如果使用兩個(gè)并聯(lián)的 SMT 器件來(lái)取代一個(gè) SMT 器件,那么對于兩個(gè)并聯(lián) SMT 器件中每個(gè)器件的導通電阻,都是僅用一個(gè) SMT 器件時(shí)的兩倍。在這種情況下,兩個(gè)并聯(lián)器件中每個(gè)器件的電流都會(huì )減半,但導通電阻卻會(huì )翻倍,所以功耗就是使用單個(gè)器件的一半。由于導通電阻減半,兩個(gè)并聯(lián) SMT 器件的總功耗會(huì )略低于僅用一個(gè) SMT 器件的功耗。從熱學(xué)角度來(lái)看,每個(gè)器件的溫度都會(huì )更低,因為當采用相同的熱管理指標時(shí)(結點(diǎn)到環(huán)境或冷卻液的熱阻),每個(gè)并聯(lián)器件的功耗僅為使用單個(gè) SMT 器件時(shí)功耗的一半。理論上,每個(gè)并聯(lián) SMT 器件的溫升(從環(huán)境或冷卻液到結點(diǎn))應為使用單個(gè) SMT 器件時(shí)的一半。除此之外,D2PAK-7L 的封裝電感更低,因此可實(shí)現更高的開(kāi)關(guān)邊緣速率,甚至更低的動(dòng)態(tài)損耗。


使用 UnitedSiC 在線(xiàn) FET-Jet Calculator? 比較典型車(chē)載充電器在不同級的封裝性能,則非常有益?!皥D騰柱 PFC” 級比較常見(jiàn),例如在額定 6.6kW、400V 輸出、75kHz、連續導通模式 (CCM) 散熱/冷卻液溫度為 80℃ 的情況下,對一系列 TO-247-4L 和 D2PAK-7L SiC FET 的“快速開(kāi)關(guān)”支路進(jìn)行評估。經(jīng)過(guò)評估,我們發(fā)現這兩種封裝的結溫差在 3℃ 至 8℃ 之間,具體取決于導通電阻的等級。


20.png

圖 1:圖示為 Vienna 整流器前端。


在功率更高且使用三相交流電源的情況下,“Vienna 整流器” 可在 40kHz 下與 800V 直流鏈路一起使用(圖 1)??梢允褂?750V SiC FET,如果再次比較 18 毫歐 TO-247-4L 和 D2PAK-7L 部件,我們發(fā)現,當 “半導體” 效率差異為 0.1% 時(shí),兩者的結溫差只有 3℃。在這種應用中,高導通電阻部件不可避免地表現出更大的差異,且單個(gè)器件會(huì )出現不可行的溫升,但如果在 22kW 功率條件下使用高價(jià)值產(chǎn)品,低電阻部件的成本相對于所獲得的收益來(lái)說(shuō)則并不是太大的開(kāi)銷(xiāo)。


D2PAK-7L 在直流/直流功率轉換級可有效地取代 TO-247-4L


剛剛討論的圖騰柱 PFC 級和 Vienna 整流器級為 “硬” 開(kāi)關(guān),且頻率保持在相對較低的范圍,以便最大限度地減少動(dòng)態(tài)損耗。 中的直流/直流轉換級可以是諧振或 “軟” 開(kāi)關(guān)轉換器,比如頻率更高的 CLLC 拓撲,可實(shí)現較小的磁性元件和較低的損耗,通常為 300kHz。例如,在 6.6kW 400V 直流鏈路和使用 18 毫歐 SiC FET 的情況下,根據 FET-Jet Calculator? 的計算結果,TO-247-4L 和 D2PAK-7L 的單個(gè)器件損耗分別為 4.1W 和 4.2W,且由于 SMT 封裝具有更低的電感,所以在使用更高頻率時(shí),理應選擇該封裝。


考慮系統總成本,且溫升或系統效率差異極小或不存在差異時(shí)(尤其是考慮到并聯(lián)的電氣和機械便利性的情況下),從 TO-247-4L 封裝變更為 SMT D2PAK-7L 封裝是順理成章的選擇。作為 SMT 器件,SiC FET 具有出色的品質(zhì)因素 (FoM) 和簡(jiǎn)單的柵極驅動(dòng),逐漸成為 EV 車(chē)載充電器應用的理想開(kāi)關(guān)之選。


表貼替代產(chǎn)品看似具有吸引力,但在22kW 功率水平下如何?實(shí)際上,……


結論


SiC FET 的標準額定電壓為 1700V,且效率比 IGBT 更高,因此比超結 MOSFET 更具吸引力,并在各級 EV 車(chē)載充電領(lǐng)域占據明顯的優(yōu)勢。雖然 SiC FET 可在 TO-247-4L 封裝內提供出色的熱性能,但其缺點(diǎn)是需要進(jìn)行機械固定和通孔焊接。所以,當考慮系統總成本,且對溫升或效率影響極小或不存在影響時(shí),選擇使用 SMT 器件(如 UnitedSiC D2PAK-7L 封裝)則是一種合理的自然發(fā)展現象。這些 SMT SiC FET 不僅可以為設計人員節省大量的電路裝配費用,還可以提供一流的 FoM 和簡(jiǎn)單易用的柵極驅動(dòng)解決方案,因此是 EV 車(chē)載充電器的理想開(kāi)關(guān)之選。



關(guān)鍵詞: Qorvo OBC SiC

評論


相關(guān)推薦

技術(shù)專(zhuān)區

關(guān)閉
国产精品自在自线亚洲|国产精品无圣光一区二区|国产日产欧洲无码视频|久久久一本精品99久久K精品66|欧美人与动牲交片免费播放
<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>