<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>

新聞中心

EEPW首頁(yè) > 網(wǎng)絡(luò )與存儲 > 設計應用 > 快速傅里葉變換FFT的C程序代碼實(shí)現

快速傅里葉變換FFT的C程序代碼實(shí)現

作者: 時(shí)間:2017-10-27 來(lái)源:網(wǎng)絡(luò ) 收藏
  一、徹底理解

  快速(Fast Fourier Transform)是離散的一種快速算法,簡(jiǎn)稱(chēng)FFT,通過(guò)FFT可以將一個(gè)信號從時(shí)域變換到頻域。
  模擬信號經(jīng)過(guò)A/D轉換變?yōu)閿底中盘柕倪^(guò)程稱(chēng)為采樣。為保證采樣后信號的頻譜形狀不失真,采樣頻率必須大于信號中最高頻率成分的2倍,這稱(chēng)之為采樣定理。
  假設采樣頻率為fs,采樣點(diǎn)數為N,那么FFT結果就是一個(gè)N點(diǎn)的復數,每一個(gè)點(diǎn)就對應著(zhù)一個(gè)頻率點(diǎn),某一點(diǎn)n(n從1開(kāi)始)表示的頻率為:fn=(n-1)*fs/N。
  舉例說(shuō)明:用1kHz的采樣頻率采樣128點(diǎn),則FFT結果的128個(gè)數據即對應的頻率點(diǎn)分別是0,1k/128,2k/128,3k/128,…,127k/128 Hz。
  這個(gè)頻率點(diǎn)的幅值為:該點(diǎn)復數的模值除以N/2(n=1時(shí)是直流分量,其幅值是該點(diǎn)的模值除以N)。

  二、傅里葉變換的C語(yǔ)言編程

  1、對于快速傅里葉變換FFT,第一個(gè)要解決的問(wèn)題就是碼位倒序。

  假設一個(gè)N點(diǎn)的輸入序列,那么它的序號二進(jìn)制數位數就是t=log2N.
  碼位倒序要解決兩個(gè)問(wèn)題:①將t位二進(jìn)制數倒序;②將倒序后的兩個(gè)存儲單元進(jìn)行交換。
  如果輸入序列的自然順序號i用二進(jìn)制數表示,例如若最大序號為15,即用4位就可表示n3n2n1n0,則其倒序后j對應的二進(jìn)制數就是n0n1n2n3,那么怎樣才能實(shí)現倒序呢?利用C語(yǔ)言的移位功能!
  程序如下,我不多說(shuō),看不懂者智商一定在180以下!

  復數類(lèi)型定義及其運算
  #define N 64 //64點(diǎn)
  #define log2N 6 //log2N=6
  /*復數類(lèi)型*/
  typedef struct
  {
  float real;
  float img;
  }complex;
  complex xdata x[N]; //輸入序列
  /*復數加法*/
  complex add(complex a,complex b)
  {
  complex c;
  c.real=a.real+b.real;
  c.img=a.img+b.img;
  return c;
  }
  /*復數減法*/
  complex sub(complex a,complex b)
  {
  complex c;
  c.real=a.real-b.real;
  c.img=a.img-b.img;
  return c;
  }
  /*復數乘法*/
  complex mul(complex a,complex b)
  {
  complex c;
  c.real=a.real*b.real - a.img*b.img;
  c.img=a.real*b.img + a.img*b.real;
  return c;
  }
  /***碼位倒序函數***/
  void Reverse(void)
  {
  unsigned int i,j,k;
  unsigned int t;
  complex temp;//臨時(shí)交換變量
  for(i=0;iN;i++)//從第0個(gè)序號到第N-1個(gè)序號
  {
  k=i;//當前第i個(gè)序號
  j=0;//存儲倒序后的序號,先初始化為0
  for(t=0;tlog2N;t++)//共移位t次,其中log2N是事先宏定義算好的
  {
  j=1;
  j|=(k1);//j左移一位然后加上k的最低位
  k>>=1;//k右移一位,次低位變?yōu)樽畹臀?br />  }
  if(j>i)//如果倒序后大于原序數,就將兩個(gè)存儲單元進(jìn)行交換(判斷j>i是為了防止重復交換)
  {
  temp=x;
  x=x[j];
  x[j]=temp;
  }
  }
  }

  2、第二個(gè)要解決的問(wèn)題就是蝶形運算

 ?、俚?級(第1列)每個(gè)蝶形的兩節點(diǎn)“距離”為1,第2級每個(gè)蝶形的兩節點(diǎn)“距離”為2,第3級每個(gè)蝶形的兩節點(diǎn)“距離”為4,第4級每個(gè)蝶形的兩節點(diǎn)“距離”為8。由此推得,
  第m級蝶形運算,每個(gè)蝶形的兩節點(diǎn)“距離”L=2m-1。
 ?、趯τ?6點(diǎn)的FFT,第1級有16組蝶形,每組有1個(gè)蝶形;第2級有4組蝶形,每組有2個(gè)蝶形;第3級有2組蝶形,每組有4個(gè)蝶形;第4級有1組蝶形,每組有8個(gè)蝶形。由此可推出,
  對于N點(diǎn)的FFT,第m級有N/2L組蝶形,每組有L=2m-1個(gè)蝶形。
 ?、坌D因子的確定
  以16點(diǎn)FFT為例,第m級第k個(gè)旋轉因子為,其中k=0~2m-1-1,即第m級共有2m-1個(gè)旋轉因子,根據旋轉因子的可約性,,所以第m級第k個(gè)旋轉因子為,其中k=0~2m-1-1。

  為提高FFT的運算速度,我們可以事先建立一個(gè)旋轉因子數組,然后通過(guò)查表法來(lái)實(shí)現。

  complex code WN[N]=//旋轉因子數組
  { //為節省CPU計算時(shí)間,旋轉因子采用查表處理
  //★根據實(shí)際FFT的點(diǎn)數N,該表數據需自行修改
  //以下結果通過(guò)Excel自動(dòng)生成
  // WN[k].real=cos(2*PI/N*k);
  // WN[k].img=-sin(2*PI/N*k);
  {1.00000,0.00000},{0.99518,-0.09802},{0.98079,-0.19509},{0.95694,-0.29028},
  {0.92388,-0.38268},{0.88192,-0.47140},{0.83147,-0.55557},{0.77301,-0.63439},
  {0.70711,-0.70711},{0.63439,-0.77301},{0.55557,-0.83147},{0.47140,-0.88192},
  {0.38268,-0.92388},{0.29028,-0.95694},{0.19509,-0.98079},{0.09802,-0.99518},
  {0.00000,-1.00000},{-0.09802,-0.99518},{-0.19509,-0.98079},{-0.29028,-0.95694},
  {-0.38268,-0.92388},{-0.47140,-0.88192},{-0.55557,-0.83147},{-0.63439,-0.77301},
  {-0.70711,-0.70711},{-0.77301,-0.63439},{-0.83147,-0.55557},{-0.88192,-0.47140},
  {-0.92388,-0.38268},{-0.95694,-0.29028},{-0.98079,-0.19509},{-0.99518,-0.09802},
  {-1.00000,0.00000},{-0.99518,0.09802},{-0.98079,0.19509},{-0.95694,0.29028},
  {-0.92388,0.38268},{-0.88192,0.47140},{-0.83147,0.55557},{-0.77301,0.63439},
  {-0.70711,0.70711},{-0.63439,0.77301},{-0.55557,0.83147},{-0.47140,0.88192},
  {-0.38268,0.92388},{-0.29028,0.95694},{-0.19509,0.98079},{-0.09802,0.99518},
  {0.00000,1.00000},{0.09802,0.99518},{0.19509,0.98079},{0.29028,0.95694},
  {0.38268,0.92388},{0.47140,0.88192},{0.55557,0.83147},{0.63439,0.77301},
  {0.70711,0.70711},{0.77301,0.63439},{0.83147,0.55557},{0.88192,0.47140},
  {0.92388,0.38268},{0.95694,0.29028},{0.98079,0.19509},{0.99518,0.09802}
  };

  3、算法實(shí)現

  我們已經(jīng)知道,N點(diǎn)FFT從左到右共有log2N級蝶形,每級有N/2L組,每組有L個(gè)。所以FFT的C語(yǔ)言編程只需用3層循環(huán)即可實(shí)現:最外層循環(huán)完成每一級的蝶形運算(整個(gè)FFT共log2N級),中間層循環(huán)完成每一組的蝶形運算(每一級有N/2L組),最內層循環(huán)完成單獨1個(gè)蝶形運算(每一組有L個(gè))。
  /***【快速傅里葉變換】***/
  void FFT(void)
  {
  unsigned int i,j,k,l;
  complex top,bottom,xW;
  Reverse(); //碼位倒序
  for(i=0;ilog2N;i++) /*共log2N級*/
  { //一級蝶形運算
  l=1i;//l等于2的i次方
  for(j=0;jN;j+=2*l) /*每L個(gè)蝶形是一組,每級有N/2L組*/
  { //一組蝶形運算
  for(k=0;kl;k++) /*每組有L個(gè)*/
  { //一個(gè)蝶形運算
  xW=mul(x[j+k+l],WN[N/(2*l)*k]); //碟間距為l
  top=add(x[j+k],xW); //每組的第k個(gè)蝶形
  bottom=sub(x[j+k],xW);
  x[j+k]=top;
  x[j+k+l]=bottom;
  }
  }
  }
  }

  三、FFT計算結果驗證

  隨便輸入一個(gè)64點(diǎn)序列,例如
  x[N]={{1,0},{3,0},{2,0},{5,0},{8,0},{4,0},{1,0},{3,0},{2,0},{5,0},{8,0},{4,0},{1,0},{3,0},{2,0},{5,0},{8,0},{4,0},{1,0},{3,0},{2,0},{5,0},{8,0},{4,0},{1,0},{3,0},{2,0},{5,0},{8,0},{4,0},{1,0},{3,0},{2,0},{5,0},{8,0},{4,0},{1,0},{3,0},{2,0},{5,0},{8,0},{4,0},{1,0},{3,0},{2,0},{5,0},{8,0},{4,0},{1,0},{3,0},{2,0},{5,0},{8,0},{4,0},{1,0},{3,0},{2,0},{5,0},{8,0},{4,0},{1,0},{3,0},{2,0},{5,0}};
  在Keil中Debug查看數組變量x的FFT計算結果并與MATLAB計算結果進(jìn)行比對,可以發(fā)現非常準確,說(shuō)明程序編寫(xiě)正確!


關(guān)鍵詞: 傅里葉變換 C程序

評論


相關(guān)推薦

技術(shù)專(zhuān)區

關(guān)閉
国产精品自在自线亚洲|国产精品无圣光一区二区|国产日产欧洲无码视频|久久久一本精品99久久K精品66|欧美人与动牲交片免费播放
<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>