<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>
"); //-->

博客專(zhuān)欄

EEPW首頁(yè) > 博客 > 手撕自動(dòng)駕駛算法—無(wú)跡卡爾曼濾波

手撕自動(dòng)駕駛算法—無(wú)跡卡爾曼濾波

發(fā)布人:計算機視覺(jué)工坊 時(shí)間:2023-07-17 來(lái)源:工程師 發(fā)布文章

1. 簡(jiǎn)介


無(wú)損卡爾曼濾波又稱(chēng)無(wú)跡卡爾曼濾波(Unscented Kalman Filter,UKF),是無(wú)損變換(Unscented Transform,UT)與標準卡爾曼濾波體系的結合,通過(guò)無(wú)損變換變換使非線(xiàn)性系統方程適用于線(xiàn)性假設下的標準卡爾曼體系。


UKF使用的是統計線(xiàn)性化技術(shù),我們把這種線(xiàn)性化的方法叫做無(wú)損變換(unscented transformation)這一技術(shù)主要通過(guò)n個(gè)在先驗分布中采集的點(diǎn)(我們把它們叫sigma points)的線(xiàn)性回歸來(lái)線(xiàn)性化隨機變量的非線(xiàn)性函數,由于我們考慮的是隨機變量的擴展,所以這種線(xiàn)性化要比泰勒級數線(xiàn)性化(EKF所使用的策略)更準確。


和EKF一樣,UKF也主要分為預測和更新。


UKF的基本思想是卡爾曼濾波與無(wú)損變換,它能有效地克服EKF估計精度低、穩定性差的問(wèn)題,因為不用忽略高階項,所以對于非線(xiàn)性分布統計量的計算精度高。



2. CTRV運動(dòng)模型


恒定轉率和速度模型(Constant Turn Rate and Velocity,CTRV)


2.1 CTRV的目標狀態(tài)量


圖片


圖片


2.2 CTRV的狀態(tài)轉移函數


圖片


圖片


圖片


2.3 CTRV Process Noise


圖片


圖片


圖片



3. Prediction


分為3個(gè)步驟:


  • 產(chǎn)生Sigma點(diǎn)


  • 預測Sigma點(diǎn)的下一幀狀態(tài) (類(lèi)似于粒子濾波中的預測,更新粒子狀態(tài))


  • 預測系統狀態(tài)的均值和方差(類(lèi)似于粒子濾波中的加權平均)


圖片


3.1 Generate Sigma Points


圖片


通常,假定狀態(tài)的個(gè)數為 n ,我們會(huì )產(chǎn)生 2n+1 個(gè)sigma點(diǎn),其中第一個(gè)就是我們當前狀態(tài)的均值 μ ,sigma點(diǎn)集的均值的計算公式為:


圖片


其中的 λ 是一個(gè)超參數,根據公式,λ 越大, sigma點(diǎn)就越遠離狀態(tài)的均值,λ 越小, sigma點(diǎn)就越靠近狀態(tài)的均值。


圖片


在我們的CTRV模型中,狀態(tài)數量 n 除了要包含5個(gè)狀態(tài)以外,還要包含處理噪聲 μa 和 μω˙,因為這些處理噪聲對模型也有著(zhù)非線(xiàn)性的影響。在增加了處理噪聲的影響以后,我們的不確定性矩陣 P 就變成了:


圖片


其中,P′ 就是我們原來(lái)的不確定性矩陣(在CTRV模型中就是一個(gè) 5×5 的矩陣),Q是處理噪聲的協(xié)方差矩陣,在CTRV模型中考慮到直線(xiàn)加速度核Q的形式為:


圖片


計算增廣的Sigma Points


圖片


3.2 預測sigma point


圖片


圖片


3.3 預測均值和方差


圖片


圖片


x k+1∣k是sigma點(diǎn)集中每個(gè)點(diǎn)各個(gè)狀態(tài)量的加權和, P′ 即為先驗分布的協(xié)方差(不確定性) P k + 1 ∣ k 由每個(gè)sigma點(diǎn)的方差的加權和求得。



4. Update


4.1 Predict Measurement


將先驗映射到測量空間然后算出均值和方差:


測量分為兩個(gè)部分,LIDAR測量和RADAR測量,其中LIDAR測量模型本身就是線(xiàn)性的,所以我們重點(diǎn)還是放在RADAR測量模型的處理上面,RADAR的測量f非線(xiàn)性映射函數為:


圖片


Measurement model如圖所示:


圖片


再一次,我們使用無(wú)損轉換來(lái)解決,但是這里,我們可以不用再產(chǎn)生sigma points了,我們可以直接使用預測出來(lái)的sigma點(diǎn)集,并且可以忽略掉處理噪聲部分。那么對先驗的非線(xiàn)性映射就可以表示為如下的sigma point預測(即預測非線(xiàn)性變換以后的均值和協(xié)方差):


圖片


圖片


這里的 R 也是測量噪聲,在這里我們直接將測量噪聲的協(xié)方差加到測量協(xié)方差上是因為該噪聲對系統沒(méi)有非線(xiàn)性影響。在本例中,以RADAR的測量為例,那么測量噪聲R為:


圖片


4.2 Update State


首先計算出sigma點(diǎn)集在狀態(tài)空間和測量空間的互相關(guān)函數T k + 1 ∣ k T


計算卡爾曼增益K k + 1 ∣


更新?tīng)顟B(tài),計算$x_{k+1|k+1}(其中 z k + 1 是新得到的測量,而 z k + 1 ∣ k 則是我們根據先驗計算出來(lái)的在測量空間的測量)。


更新?tīng)顟B(tài)協(xié)方差矩陣,計算P k + 1 ∣ k + 1 


圖片


版權聲明:本文為CSDN博主「令狐少俠、」的原創(chuàng )文章,遵循CC 4.0 BY-SA版權協(xié)議,轉載請附上原文出處鏈接及本聲明。

原文鏈接:

https://blog.csdn.net/weixin_42905141/article/details/99710297



*博客內容為網(wǎng)友個(gè)人發(fā)布,僅代表博主個(gè)人觀(guān)點(diǎn),如有侵權請聯(lián)系工作人員刪除。



關(guān)鍵詞: 汽車(chē)電子

相關(guān)推薦

技術(shù)專(zhuān)區

關(guān)閉
国产精品自在自线亚洲|国产精品无圣光一区二区|国产日产欧洲无码视频|久久久一本精品99久久K精品66|欧美人与动牲交片免费播放
<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>