<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>
"); //-->

博客專(zhuān)欄

EEPW首頁(yè) > 博客 > 下一代射頻芯片,靠它們了

下一代射頻芯片,靠它們了

發(fā)布人:旺材芯片 時(shí)間:2023-07-05 來(lái)源:工程師 發(fā)布文章

來(lái)源:imec


年復一年,越來(lái)越多的用戶(hù)通過(guò)無(wú)線(xiàn)方式傳輸越來(lái)越多的數據。為了跟上這一趨勢并使數據傳輸更快、更高效,第五代移動(dòng)通信 (5G) 正在推出,業(yè)界已經(jīng)在關(guān)注未來(lái)的發(fā)展。5G 可實(shí)現 10Gbit/s 的峰值數據速率,而 6G 預計從 2030 年起將以 100Gbit/s 的速度運行。除了應對更多數據和連接之外,研究人員還研究下一代無(wú)線(xiàn)通信如何支持自動(dòng)駕駛和全息存在等新用例。


為了實(shí)現極高的數據速率,電信行業(yè)一直在提高無(wú)線(xiàn)信號的頻率。雖然 5G 最初使用 6GHz 以下頻段,但針對 28/39GHz 的產(chǎn)品已經(jīng)展示。此外,由于 FR3 (6-20GHz) 頻段能夠平衡覆蓋范圍和容量,因此人們對 5G 網(wǎng)絡(luò )使用 FR3 (6-20GHz) 頻段越來(lái)越感興趣。對于 6G,100GHz 以上的頻率正在討論中。


轉向更高的頻率有幾個(gè)優(yōu)點(diǎn):可以使用新的頻段,解決現有頻段內的頻譜稀缺問(wèn)題。而且,工作頻率越高,就越容易獲得更寬的帶寬。原則上,高于 100GHz 的頻率和高達 30GHz 的帶寬允許電信運營(yíng)商在無(wú)線(xiàn)數據鏈路中使用低階調制方案,從而降低功耗。較高的頻率還與較小的波長(cháng) (λ) 相關(guān)。隨著(zhù)天線(xiàn)陣列尺寸隨λ 2縮放,天線(xiàn)陣列可以排列得更密集。這有助于更好的波束成形,這種技術(shù)可確保大部分傳輸能量到達目標接收器。


但更高頻率的出現是有代價(jià)的。如今,CMOS是構建****和接收器關(guān)鍵組件的首選技術(shù)。其中包括前端模塊內的功率放大器,用于向天線(xiàn)發(fā)送射頻信號或從天線(xiàn)發(fā)送射頻信號。工作頻率越高,基于 CMOS 的功率放大器就越難以以足夠高的效率提供所需的輸出功率。


這就是GaN 和 InP等技術(shù)發(fā)揮作用的地方。由于出色的材料特性,這些 III/V 族半導體更有可能在高工作頻率下提供所需的輸出功率和效率。例如,GaN具有高電流密度、高電子遷移率和大擊穿電壓。高功率密度還可以實(shí)現較小的外形尺寸,從而在相同性能的情況下減小總體系統尺寸。


GaN 和 InP 在更高的工作頻率下優(yōu)于 CMOS


在建模實(shí)驗中,imec 的研究人員比較了140GHz工作頻率下三種不同功率放大器實(shí)現的性能:全 CMOS 實(shí)現、帶有 SiGe 異質(zhì)結雙極晶體管 (HBT) 的 CMOS 波束形成器(beamformer)和InP HBT。InP 在輸出功率(超過(guò) 20dBm)和能源效率(20% 至 30%)方面明顯獲勝。建模結果還表明,對于 InP,能量效率的最佳點(diǎn)是通過(guò)相對較少的天線(xiàn)數量獲得的。這對于用戶(hù)設備(例如移動(dòng)設備)等占地面積受限的用例尤其有趣。


圖片

圖 1 – 比較****架構中 CMOS、SiGe 和 InP 器件的功耗與天線(xiàn)數量的關(guān)系(如 IEDM 2022 上所述)。


然而,在較低的毫米波頻率下,GaN表現出優(yōu)異的性能。對于28GHz 和 39GHz,由碳化硅上氮化鎵 (GaN-on-SiC) 制成的高電子遷移率晶體管 (HEMT) 在輸出功率和能效方面均優(yōu)于基于 CMOS 的器件和 GaAs HEMT??紤]了兩種不同的用例,即固定無(wú)線(xiàn)接入(FWA,具有 16 個(gè)天線(xiàn))和用戶(hù)設備(具有 4 個(gè)天線(xiàn))。


圖 2 –(左)FWA 和(右)用戶(hù)設備中 28GHz 和 39GHz 工作頻率的輸出功率:三種不同技術(shù)的比較(如 IEDM 2022 上所示)。


升級的機遇與挑戰


但如果我們考慮成本和集成的簡(jiǎn)易性,GaN 和 InP 器件技術(shù)還無(wú)法與基于 CMOS 的技術(shù)完全競爭。III/V 器件通常在小型且昂貴的非硅襯底上制造,依賴(lài)于不太適合大批量制造的工藝。將這些器件集成在 200 或 300mm 硅晶圓上是一種有趣的方法,可以在保持卓越射頻性能的同時(shí)實(shí)現整體優(yōu)化。硅基板不僅更便宜,而且兼容 CMOS 的工藝還可以實(shí)現大規模制造。


在 Si 平臺上集成 GaN 和 InP需要結合新的晶體管和電路設計方法、材料和制造技術(shù)。主要挑戰之一與大晶格失配有關(guān):InP 為 8%,GaN 為 17%。眾所周知,這會(huì )在層中產(chǎn)生許多缺陷,最終降低器件性能。


此外,我們還必須將基于 GaN-on-Si 和 InP-on-Si 的組件與基于 CMOS 的組件共同集成到一個(gè)完整的系統中。GaN 和 InP 技術(shù)最初將用于實(shí)現前端模塊內的功率放大器。此外,低噪聲放大器和開(kāi)關(guān)可能受益于這些化合物半導體的獨特性能。但最終,校準、控制和波束形成仍然需要 CMOS。


在其高級射頻計劃中,imec 與其行業(yè)合作伙伴一起探索在大尺寸硅晶圓上集成 GaN 和 InP 器件的各種方法,以及如何實(shí)現它們與 CMOS 組件的異構集成。正在評估不同用例(基礎設施(例如 FWA)以及用戶(hù)設備)的優(yōu)缺點(diǎn)。


改進(jìn) GaN-on-Si 技術(shù)的射頻性能


根據起始襯底的不同,GaN 技術(shù)有多種類(lèi)型:GaN bulk substrates, GaN-on-SiC和GaN-on-Si。如今,GaN-on-SiC得到了廣泛探索,并已用于基礎設施應用,包括 5G ****。GaN-on-SiC比GaN bulk substrates技術(shù)更具成本效益,而且碳化硅是一種出色的熱導體,有助于散發(fā)高功率基礎設施應用中產(chǎn)生的熱量。然而,成本和基板尺寸有限使其不太適合大規模生產(chǎn)。


相反,GaN-on-Si具有擴大到 200mm 甚至 300mm 晶圓的潛力。得益于多年來(lái)電力電子應用的創(chuàng )新,GaN在大尺寸Si襯底上的集成取得了巨大進(jìn)展。但硅基氮化鎵技術(shù)還需要進(jìn)一步改進(jìn),以實(shí)現最佳射頻性能。主要挑戰在于實(shí)現與 GaN-on-SiC 相當的大信號和可靠性性能以及提高工作頻率。這需要在材料堆疊設計和材料選擇方面不斷創(chuàng )新,縮短 HEMT 的柵極長(cháng)度,抑制寄生效應,并保持盡可能低的射頻色散。


Imec 的射頻 GaN-on-Si 工藝流程從在 200mm Si 晶圓上生長(cháng)(通過(guò)金屬有機化學(xué)氣相沉積 (MOCVD))外延結構開(kāi)始。該結構由專(zhuān)有的 GaN/AlGaN 緩沖結構、GaN 溝道、AlN 間隔物和 AlGaN 勢壘組成。具有 TiN 肖特基金屬柵極的 GaN HEMT 器件隨后與(低溫)3 級 Cu 后道工藝集成。


近期,imec的GaN-on-Si平臺取得了具有競爭力的成果,輸出功率和功率附加效率(PAE)首次接近GaN -on-SiC技術(shù)。PAE 是評估功率放大器效率的常用指標,它考慮了放大器增益對其整體效率的影響。


圖 3 - 硅基氮化鎵基準測試數據。紅色的 IMEC 數據是 GaN-on-Si 器件的最佳報告之一,可與 GaN-on-SiC 襯底相媲美(如 IEDM 2022 上介紹的)。


通過(guò)建?;顒?dòng)補充技術(shù)開(kāi)發(fā)將最終有助于實(shí)現更好的性能和可靠性。例如,在 IEDM 2022 上,imec 推出了一個(gè)仿真框架,可以更好地預測射頻設備中的熱傳輸。在硅基氮化鎵 HEMT 的案例研究中,模擬顯示峰值溫升比之前預測的高出三倍。諸如此類(lèi)的建模工作為在開(kāi)發(fā)階段早期優(yōu)化射頻器件及其布局提供了進(jìn)一步的指導。


用于 6G 亞太赫茲頻率的 InP-on-Si:三種制造方法


如前所述,InP HBT在所有技術(shù)實(shí)現的140GHz工作頻率下提供最佳輸出功率/效率權衡。研究人員還知道如何設計 InP HBT 以獲得最佳射頻性能。但制造通常從小型 (InP) 襯底晶圓 (< 150mm) 開(kāi)始,使用與CMOS 不兼容的類(lèi)似實(shí)驗室的工藝。


但是當我們在 Si 上集成 InP 時(shí),性能會(huì )發(fā)生什么變化呢?眾所周知,在 Si 上沉積 InP 會(huì )引入許多缺陷,主要是螺紋位錯( threading dislocations)和平面缺陷(planar defects)。這些缺陷會(huì )引起漏電流,從而極大地降低器件性能或導致可靠性問(wèn)題。


正在考慮三種升級方法。其中兩個(gè)依賴(lài)于 Si 上 InP 的直接生長(cháng),另一個(gè)依賴(lài)于晶圓重構。預計所有三種方法都將提供比使用小型 InP 襯底的現有技術(shù)更具成本效益的解決方案。但它們在性能、成本和異構集成潛力方面都各有利弊。Imec 承擔了評估各種用例(基礎設施以及移動(dòng)設備)的優(yōu)勢和挑戰的角色。


圖片

圖 4 – 不同 InP-on-Si 生長(cháng)方法的示意圖:(a) nano-ridge engineering; (b) blanket growth with strain relaxed buffers, and (c) wafer reconstruction.


制造 InP-on-Si HBT 的第一種方法(圖 4b)使用直接沉積在 Si 頂部的應變松弛緩沖層,以補償 Si 和 InP 之間 8% 的晶格失配。接下來(lái),InP直接生長(cháng)在該緩沖層的頂部。使用更大晶圓尺寸的能力,特別是在部分硅可以重復使用的情況下,提供了顯著(zhù)的成本優(yōu)勢。然而,需要優(yōu)化以進(jìn)一步減少缺陷數量。


與這種“blanket”生長(cháng)方法不同,imec 提出nano-ridge engineering(NRE) 作為更有效地應對缺陷的替代技術(shù)(圖 4a)。NRE 依賴(lài)于在 Si 中預先圖案化的溝槽中選擇性生長(cháng) III/V 族材料。這些高深寬比溝槽對于捕獲狹窄底部中的缺陷非常有效,并允許在溝槽外生長(cháng)高質(zhì)量、低缺陷率的材料。過(guò)度生長(cháng)的nano-ridge使其向頂部變寬,為設備堆棧形成堅實(shí)的基礎。從 GaAs/InGaP 案例研究中獲得的初步見(jiàn)解將指導目標 InGaAs/InP NRE HBT 器件的優(yōu)化。


除了直接生長(cháng)之外,InP 還可以使用晶圓重建技術(shù)放置在 Si 上(圖 4c)。在這種情況下,高質(zhì)量 InP 襯底(無(wú)論是否有有源層)在晶圓構造過(guò)程中被切成片。隨后使用芯片到晶圓鍵合技術(shù)將這些瓦片附著(zhù)到硅晶圓上。主要挑戰在于材料的有效轉移和 InP 襯底的去除,為此正在考慮多種技術(shù)。


走向異構集成


最終,III/V-on-Si 功率放大器必須與負責校準和控制等功能的基于 CMOS 的組件相結合。Imec 正在研究各種異構集成選項,權衡它們在各種用例中的優(yōu)缺點(diǎn)。


先進(jìn)的層壓基板技術(shù)是將不同射頻元件集成到系統級封裝中的最常見(jiàn)方法,并且正在進(jìn)行優(yōu)化以使其能夠適應更高的頻率。


此外,imec還探索更先進(jìn)的異構集成選項,包括2.5D中介層和3D集成技術(shù)。


特別是對于 100GHz 以上的頻率,需要注意的是天線(xiàn)模塊開(kāi)始定義收發(fā)器可用的區域。事實(shí)上,當頻率較高時(shí),波長(cháng)會(huì )減小,天線(xiàn)陣列的面積也會(huì )相應縮小。在 100GHz 以上,天線(xiàn)尺寸變得小于前端模塊尺寸,而前端模塊尺寸幾乎不會(huì )隨著(zhù)頻率的增加而縮小。對于大型天線(xiàn)陣列配置,一個(gè)有趣的選擇是將射頻前端模塊移至天線(xiàn)陣列下方。這就是3D 集成技術(shù)的用武之地(die-to-wafer or 和wafer-to-wafer)發(fā)揮作用,實(shí)現前端模塊和天線(xiàn)模塊之間的短且明確的連接。然而,熱管理仍然是 3D 集成的一個(gè)重要問(wèn)題,并且能夠提供有效的散熱器至關(guān)重要。在imec,我們正在進(jìn)行全面的系統技術(shù)協(xié)同優(yōu)化 (STCO) 分析,以評估用于 3D 集成的不同技術(shù),并從系統級角度指導技術(shù)選擇。


對于手持設備,減少天線(xiàn)數量可以放松限制,2.5D interposer技術(shù)被認為是一種有趣的方法。這種異構集成選項使用具有光刻定義連接的層堆棧,甚至是硅通孔,以在基于 III/V 和 CMOS 的組件之間進(jìn)行通信。在這種情況下,III/V 器件位于 CMOS 芯片旁邊,可以實(shí)現更好的熱管理,因為兩個(gè)芯片都可以與散熱器直接接觸。然而,這種架構僅允許一維波束控制。我們目前正在評估 2.5D 中介層技術(shù)的硬件實(shí)現,研究基板、電介質(zhì)和再分布層的最佳組合,以最大限度地減少損耗。例如,我們展示了射頻定制硅中介層技術(shù)的第一個(gè)版本,該技術(shù)使用標準硅基板、銅半加成互連、


圖片

圖 75– 封裝中集成有 InP 和 CMOS 器件以及天線(xiàn)陣列的 RF Si 內插器的示意圖。


總之,最近的升級和集成工作表明,硅基氮化鎵和硅基磷化銦可以成為下一代高容量無(wú)線(xiàn)通信應用的可行技術(shù)。



*博客內容為網(wǎng)友個(gè)人發(fā)布,僅代表博主個(gè)人觀(guān)點(diǎn),如有侵權請聯(lián)系工作人員刪除。



關(guān)鍵詞: 射頻芯片

相關(guān)推薦

技術(shù)專(zhuān)區

關(guān)閉
国产精品自在自线亚洲|国产精品无圣光一区二区|国产日产欧洲无码视频|久久久一本精品99久久K精品66|欧美人与动牲交片免费播放
<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>