在高速 ADC 中增加 SFDR 的局限性
我們還將了解 ADC 中 SFDR 和SNR(信噪比)之間的一般權衡,并為以后有關(guān)應用抖動(dòng)技術(shù)改善 ADC SFDR 的有趣討論奠定基礎。抖動(dòng)是一種有意向 ADC 輸入添加適當噪聲分量以改善 AD 轉換系統某些性能方面的技術(shù)。認為添加噪聲可以改善 SFDR 這聽(tīng)起來(lái)很神奇。
本文引用地址:http://dyxdggzs.com/article/202305/446282.htm我們還將了解 ADC 中 SFDR 和SNR(信噪比)之間的一般權衡,并為以后有關(guān)應用抖動(dòng)技術(shù)改善 ADC SFDR 的有趣討論奠定基礎。抖動(dòng)是一種有意向 ADC 輸入添加適當噪聲分量以改善 AD 轉換系統某些性能方面的技術(shù)。認為添加噪聲可以改善 SFDR 這聽(tīng)起來(lái)很神奇。
然而,在深入探討之前,讓我們快速回顧一下什么是 SFDR 及其重要性。
什么是無(wú)雜散動(dòng)態(tài)范圍 (SFDR)?為什么 SFDR 很重要?
有幾種不同的規范可用于表征電路線(xiàn)性度。一種常用的規范是 SFDR 指標。該指標定義為所需信號幅度與感興趣帶寬內雜散的比率(圖 1)。
圖 1. 顯示 SFDR 指標的圖表。
對于 ADC,SFDR 展示了 ADC 如何在存在大信號的情況下同時(shí)處理小信號。例如,考慮一個(gè)接收器應用程序。假設 ADC 輸入包含一個(gè) +1 dBm 阻塞信號和一個(gè) -75 dBm 所需信號。在這種情況下,由于A(yíng)DC 非線(xiàn)性,大阻斷器會(huì )在 ADC 輸出端產(chǎn)生不需要的雜散。這些不需要的雜散在圖 2 中以紫色組件顯示。
圖 2. 以紫色顯示不需要的雜散的圖表。
如果雜散距離所需信號足夠近并且足夠大,它可能會(huì )將 SNR 降低到不可接受的水平。當今通信系統的嚴格要求可能需要 95 dB 范圍內的高 SFDR 值。然而,普通的 ADC 無(wú)法提供這種級別的線(xiàn)性度。下面的表 1 比較了 Analog Devices 的四種高性能 ADC 的一些關(guān)鍵參數,應該可以幫助您了解高性能 ADC 中的 SFDR 范圍。
表 1. 四種高性能 ADC 的關(guān)鍵參數。數據由Analog Devices提供
此外,該表強調了 SNR 和 SFDR 指標之間的權衡。對于此表中的前三個(gè) ADC,它們使用相同的 IC 技術(shù)并具有相同的功耗,SFDR 和 SNR 之間存在反比關(guān)系。我們稍后會(huì )在本文中探討這種權衡的起源。在此之前,讓我們回答一個(gè)重要問(wèn)題:在高速 ADC 中增加 SFDR 的主要限制是什么?
ADC 中的靜態(tài)和動(dòng)態(tài)線(xiàn)性度
ADC 是基于許多不同電路架構設計的復雜系統,例如閃存、SAR、delta-sigma (ΔΣ)和流水線(xiàn)結構。根據架構和特定的電路實(shí)現,不同的電路組件可能是非線(xiàn)性的主要。盡管有許多設計,但我們仍然可以認識到在高速 ADC 中增加 SFDR 的兩個(gè)主要限制,即 S/H 電路和 ADC 的編碼器部分。為了更好地理解這一點(diǎn),請考慮圖 3 中描繪的 SAR ADC 的框圖。
圖 3. SAR ADC 的框圖。
SAR 數字化算法的步是采樣階段,在此期間 S/H 獲取輸入值。該樣本將在整個(gè)轉換階段保留。在轉換階段,將采集的樣本連續與適當的閾值水平進(jìn)行比較,以找到輸入的數字等效值。要確定輸出的每一位,需要一個(gè)時(shí)鐘周期。假設采樣階段也需要一個(gè)時(shí)鐘周期,對于一個(gè) N 位 SAR ADC,我們需要 N + 1 個(gè)時(shí)鐘周期。圖 4 顯示了 3 位 SAR ADC 的 S/H 輸出和閾值波形。
圖 4. 3 位 SAR ADC 的 S/H 輸出和閾值波形。
這里的要點(diǎn)是,對于給定的轉換階段,無(wú)論輸入頻率是多少,S/H 之后的電路元件都理想地處理直流信號。因此,SAR ADC 的比較器或內部DAC(數模轉換器)內的任何非線(xiàn)性 都不會(huì )隨輸入頻率而改變。我們可以說(shuō) ADC 編碼器部分的非線(xiàn)性會(huì )導致系統的靜態(tài)(或 DC)非線(xiàn)性。靜態(tài)非線(xiàn)性的特征在于 ADC 傳遞函數中的DNL(微分非線(xiàn)性)和INL(積分非線(xiàn)性)誤差。
S/H 非線(xiàn)性如何?與有效處理直流信號的編碼器部分不同,S/H“看到”交流信號。我們將在下一節中討論 S/H 非線(xiàn)性的重要部分如何隨輸入頻率變化。因此,S/H 決定了 ADC 的動(dòng)態(tài)(或 AC)線(xiàn)性度。
S/H 電路非線(xiàn)性
要了解 S/H 非線(xiàn)性,請考慮圖 5 中所示的簡(jiǎn)單 S/H 電路。
圖 5. S/H 電路示例。
這個(gè)基本的 S/H 由一個(gè)采樣開(kāi)關(guān) S1 和一個(gè)保持電容(C hold ) 組成,后者用于存儲采集的樣本。
電路操作包括兩種模式:采樣(或采集模式)和保持模式。在采樣模式下,開(kāi)關(guān)導通,電容電壓跟蹤輸入。在采樣瞬間,開(kāi)關(guān)關(guān)閉并斷開(kāi) C hold 與輸入的連接。這將啟動(dòng)保持模式,其中電容器保持采集的樣本。
實(shí)際上,我們不可能有零電阻的理想開(kāi)關(guān)。為了強調這一點(diǎn),上圖明確顯示了開(kāi)關(guān)電阻 R switch。開(kāi)關(guān)電阻的熱噪聲是高分辨率奈奎斯特速率 ADC 中的主要噪聲。為了解決這個(gè)問(wèn)題,保持電容的值通常選擇得足夠大以限制帶寬 ,從而限制系統的噪聲。然而,有限的帶寬意味著(zhù) S/H 的輸出無(wú)法立即達到其終值。這是由于 RC 網(wǎng)絡(luò )的時(shí)間常數,由下式給出τ = R s w i t c h Ch o l d _τ=R秒w我噸CHCHo升d
圖 6 顯示了 S/H 操作的一個(gè)周期的示例波形。
圖 6. S/H 電路操作一個(gè)周期的示例波形。
S/H 需要一些時(shí)間(如圖中的“采集時(shí)間”所示)才能穩定在終值附近的指定誤差范圍內。在采集時(shí)間之后,S/H 能夠以較小的誤差跟蹤輸入。采集時(shí)間取決于 R switch、 C hold 和允許誤差的值。此外,采集時(shí)間對 ADC 的采樣率設置了上限。
實(shí)際上,開(kāi)關(guān)電阻不是恒定的,會(huì )隨著(zhù)輸入電平的變化而變化。R switch 對輸入的依賴(lài)性會(huì )導致輸入相關(guān)的相移,從而導致諧波失真。圖 7 顯示了 R開(kāi)關(guān)隨輸入電平增加的情況的示例波形 。
圖 7. R開(kāi)關(guān) 隨輸入電平增加時(shí)的示例波形。圖片由B. Razavi提供
請注意,此相移(或非線(xiàn)性)隨頻率變化。例如,在比 RC 網(wǎng)絡(luò )的極點(diǎn)小得多的頻率下,相移為零,R開(kāi)關(guān)的微小變化 對線(xiàn)性度的影響可以忽略不計。然而,隨著(zhù)我們增加頻率,相移變得越來(lái)越顯著(zhù)。
值得一提的是,R開(kāi)關(guān) 隨輸入的變化只是 S/H 非線(xiàn)性的一個(gè)。開(kāi)關(guān)的輸入相關(guān)電荷注入以及輸入相關(guān)采樣瞬間等機制是導致 S/H 非線(xiàn)性的其他現象。后一種機制是指開(kāi)關(guān)關(guān)閉的瞬間可以隨輸入電平的變化而變化。
轉換率限制問(wèn)題
S/H 電路的頻率相關(guān)非線(xiàn)性也可以通過(guò)注意到驅動(dòng)保持電容器的電路具有有限的轉換速率來(lái)解釋。圖 8 更詳細地顯示了典型 S/H 電路的框圖。
圖 8. 更詳細的 S/H 電路框圖。圖片由Analog Devices提供。
在該電路中,個(gè)放大器通過(guò)向信號源呈現高阻抗來(lái)緩沖輸入。它還提供電流增益來(lái)為保持電容器充電。右側放大器用作輸出緩沖器,并防止 S/H 輸出電壓在保持模式期間被后續電路的輸入阻抗放電。假設輸入緩沖器的短路輸出電流為I SC。這是緩沖器可以提供給 C H的電流。因此,壓擺率(或 S/H 輸出的變化率)由公式 1 給出。
S l e w R a t e = Δ V Δ t =我是C C H小號升電子w RA噸電子=△V△噸=我小號CCH
等式 1。
對于正弦波輸入:
V i n = V M s i n ( 2 π f t )V我n=V米秒我n(2個(gè)πF噸)
信號的變化率由下式給出:
m x ( d V i n d t _) =2πfVM米AX(dV我nd噸)=2個(gè)πFV米
對于給定的大信號輸入,增加頻率可以使信號的變化率大于 S/H 的壓擺率。在這種情況下,S/H 輸出無(wú)法足夠快地跟隨輸入,從而導致信號失真問(wèn)題。缺乏顯示足夠轉換率以跟上快速變化的模擬輸入的 S/H 是許多 ADC 無(wú)法在超過(guò)幾兆赫信號帶寬的情況下表現良好的一個(gè)關(guān)鍵原因。
例如,考慮Analog Devices 的AD9042 。盡管 AD9042 是專(zhuān)門(mén)設計有寬帶、高 SFDR 前端的轉換器,但其 SFDR 仍會(huì )隨著(zhù)輸入頻率而降低,如圖 9 所示。
圖 9. 顯示 AD9042 的 SFDR 如何隨輸入頻率降低的圖表。圖片由Analog Devices提供。
SNR-SFDR 權衡
上述討論還解釋了我們在本文前面提到的 SNR-SFDR 權衡。請注意,較大的保持電容器會(huì )導致較低的轉換率(公式 1)和較高的失真(或較低的 SFDR)。另一方面,較大的電容器會(huì )降低系統帶寬并改善噪聲性能(更高的 SNR)。
應用抖動(dòng)改善 SFDR
如上所述,改進(jìn) SFDR 有兩個(gè)主要限制:S/H 電路產(chǎn)生的非線(xiàn)性和 ADC 編碼器部分產(chǎn)生的非線(xiàn)性。沒(méi)有任何外部措施可以減少 S/H 電路產(chǎn)生的失真。然而,抖動(dòng)技術(shù)可以降低 ADC 編碼器部分的非線(xiàn)性。這將在本系列的下一篇文章中討論。
評論