<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>

新聞中心

EEPW首頁(yè) > 設計應用 > 為什么叫“卡爾曼”,卡爾曼濾波器算法介紹

為什么叫“卡爾曼”,卡爾曼濾波器算法介紹

作者: 時(shí)間:2018-09-26 來(lái)源:網(wǎng)絡(luò ) 收藏

  首先看看為什么叫“”。跟其他著(zhù)名的理論(例如傅立葉變換,泰勒級數等等)一樣,也是一個(gè)人的名字,而跟他們不同的是,他是個(gè)現代人!

本文引用地址:http://dyxdggzs.com/article/201809/392305.htm

  1、全名Rudolf Emil Kalman

  匈牙利數學(xué)家,1930年出生于匈牙利首都布達佩斯。1953,1954年于麻省理工學(xué)院分別獲得電機工程學(xué)士及碩士學(xué)位。1957年于哥倫比亞大學(xué)獲得博士學(xué)位。我們現在要學(xué)習的卡爾曼,正是源于他的博士論文和1960年發(fā)表的論文《A New Approach to Linear Filtering and Prediction Problems》(線(xiàn)性濾波與預測問(wèn)題的新方法)。

  簡(jiǎn)單來(lái)說(shuō),卡爾曼是一個(gè)“optimal recursive data processing algorithm(最優(yōu)化自回歸數據處理算法)”。對于解決很大部分的問(wèn)題,他是最優(yōu),效率最高甚至是最有用的。他的廣泛應用已經(jīng)超過(guò)30年,包括機器 人導航,控制,傳感器數據融合甚至在軍事方面的雷達系統以及導彈追蹤等等。近年來(lái)更被應用于計算機圖像處理,例如頭臉識別,圖像分割,圖像邊緣檢測等等。

  2、卡爾曼的介紹(Introduction to the Kalman Filter)

  為了可以更加容易的理解卡爾曼濾波器,這里會(huì )應用形象的描述方法來(lái)講解,而不是像大多數參考書(shū)那樣羅列一大堆的數學(xué)公式和數學(xué)符號。但是,他的5條公式是其核心內容。結合現代的計算機,其實(shí)卡爾曼的程序相當的簡(jiǎn)單,只要你理解了他的那5條公式。

  在介紹他的5條公式之前,先讓我們來(lái)根據下面的例子一步一步的探索。

  假設我們要研究的對象是一個(gè)房間的溫度。根據你的經(jīng)驗判斷,這個(gè)房間的溫度是恒定的,也就是下一分鐘的溫度等于現在這一分鐘的溫度(假設我們用一分鐘來(lái)做時(shí) 間單位)。假設你對你的經(jīng)驗不是100%的相信,可能會(huì )有上下偏差幾度。我們把這些偏差看成是高斯白噪聲(White Gaussian Noise),也就是這些偏差跟前后時(shí)間是沒(méi)有關(guān)系的而且符合高斯分配(Gaussian Distribution)。另外,我們在房間里放一個(gè)溫度計,但是這個(gè)溫度計也不準確的,測量值會(huì )比實(shí)際值偏差。我們也把這些偏差看成是高斯白噪聲。

  好了,現在對于某一分鐘我們有兩個(gè)有關(guān)于該房間的溫度值:你根據經(jīng)驗的預測值(系統的預測值)和溫度計的值(測量值)。下面我們要用這兩個(gè)值結合他們各自的噪聲來(lái)估算出房間的實(shí)際溫度值。

  假如我們要估算k時(shí)刻的是實(shí)際溫度值。首先你要根據k-1時(shí)刻的溫度值,來(lái)預測k時(shí)刻的溫度。因為你相信溫度是恒定的,所以你會(huì )得到k時(shí)刻的溫度預測值是跟k-1時(shí)刻一樣的,假設是23度,同時(shí)該值的高斯噪聲的偏差是5度(5是這樣得到的:如果k-1時(shí)刻估算出的最優(yōu)溫度值的偏差是3,你對自己預測的不確定度是4度,他們平方相加再開(kāi)方,就是5)。然后,你從溫度計那里得到了k時(shí)刻的溫度值,假設是25度,同時(shí)該值的偏差是4度。

  由于我們用于估算k時(shí)刻的實(shí)際溫度有兩個(gè)溫度值,分別是23度和25度。究竟實(shí)際溫度是多少呢?相信自己還是相信溫度計呢?究竟相信誰(shuí)多一點(diǎn),我們可以用他們的covariance來(lái)判斷。因為Kg^2=5^2/(5^2+4^2),所以Kg=0.78,我們可以估算出k時(shí)刻的實(shí)際溫度值是:23+0.78*(25-23)=24.56度??梢钥闯?,因為溫度計的covariance比較小(比較相信溫度計),所以估算出的最優(yōu)溫度值偏向溫度計的值。

  現在我們已經(jīng)得到k時(shí)刻的最優(yōu)溫度值了,下一步就是要進(jìn)入k+1時(shí)刻,進(jìn)行新的最優(yōu)估算。到現在為止,好像還沒(méi)看到什么自回歸的東西出現。對了,在進(jìn)入k+1時(shí)刻之前,我們還要算出k時(shí)刻那個(gè)最優(yōu)值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。這里的5就是上面的k時(shí)刻你預測的那個(gè)23度溫度值的偏差,得出的2.35就是進(jìn)入k+1時(shí)刻以后k時(shí)刻估算出的最優(yōu)溫度值的偏差(對應于上面的3)。

  就是這樣,卡爾曼濾波器就不斷的把covariance遞歸,從而估算出最優(yōu)的溫度值。他運行的很快,而且它只保留了上一時(shí)刻的covariance。上面的Kg,就是卡爾曼增益(Kalman Gain)。他可以隨不同的時(shí)刻而改變他自己的值,是不是很神奇!

  下面就要言歸正傳,討論真正工程系統上的卡爾曼。

  3、卡爾曼濾波器算法(The Kalman Filter Algorithm)

  在這一部分,我們就來(lái)描述源于Dr Kalman 的卡爾曼濾波器。下面的描述,會(huì )涉及一些基本的概念知識,包括概率(Probability),隨即變量(Random Variable),高斯或正態(tài)分配(Gaussian Distribution)還有State-space Model等等。但對于卡爾曼濾波器的詳細證明,這里不能一一描述。

  首先,我們先要引入一個(gè)離散控制過(guò)程的系統。該系統可用一個(gè)線(xiàn)性隨機微分方程(Linear Stochastic Difference equation)來(lái)描述:

  X(k)=A X(k-1)+B U(k)+W(k)

  再加上系統的測量值:

  Z(k)=H X(k)+V(k)

  上兩式子中,X(k)是k時(shí)刻的系統狀態(tài),U(k)是k時(shí)刻對系統的控制量。A和B是系統參數,對于多模型系統,他們?yōu)榫仃嚒?Z(k)是k時(shí)刻的測量值,H是測量系統的參數,對于多測量系統,H為矩陣。W(k)和V(k)分別表示過(guò)程和測量的噪聲。他們被假設成高斯白噪聲 (White Gaussian Noise),他們的covariance 分別是Q,R(這里我們假設他們不隨系統狀態(tài)變化而變化)。

  對于滿(mǎn)足上面的條件(線(xiàn)性隨機微分系統,過(guò)程和測量都是高斯白噪聲),卡爾曼濾波器是最優(yōu)的信息處理器。下面我們來(lái)用他們結合他們的covariances 來(lái)估算系統的最優(yōu)化輸出(類(lèi)似上一節那個(gè)溫度的例子)。

  首先我們要利用系統的過(guò)程模型,來(lái)預測下一狀態(tài)的系統。假設現在的系統狀態(tài)是k,根據系統的模型,可以基于系統的上一狀態(tài)而預測出現在狀態(tài):

  X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)

  式(1)中,X(k|k-1)是利用上一狀態(tài)預測的結果,X(k-1|k-1)是上一狀態(tài)最優(yōu)的結果,U(k)為現在狀態(tài)的控制量,如果沒(méi)有控制量,它可以為0。

  到現在為止,我們的系統結果已經(jīng)更新了,可是,對應于X(k|k-1)的covariance還沒(méi)更新。我們用P表示covariance:

  P(k|k-1)=A P(k-1|k-1) A’+Q ……… (2)

  式(2)中,P(k|k-1)是X(k|k-1)對應的covariance,P(k-1|k-1)是X(k-1|k-1)對應的 covariance,A’表示A的轉置矩陣,Q是系統過(guò)程的covariance。式子1,2就是卡爾曼濾波器5個(gè)公式當中的前兩個(gè),也就是對系統的預 測。

  現在我們有了現在狀態(tài)的預測結果,然后我們再收集現在狀態(tài)的測量值。結合預測值和測量值,我們可以得到現在狀態(tài)(k)的最優(yōu)化估算值X(k|k):

  X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)

  其中Kg為卡爾曼增益(Kalman Gain):

  Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) ……… (4)

  到現在為止,我們已經(jīng)得到了k狀態(tài)下最優(yōu)的估算值X(k|k)。但是為了要另卡爾曼濾波器不斷的運行下去直到系統過(guò)程結束,我們還要更新k狀態(tài)下X(k|k)的covariance:

  P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5)

  其中I 為1的矩陣,對于單模型單測量,I=1。當系統進(jìn)入k+1狀態(tài)時(shí),P(k|k)就是式子(2)的P(k-1|k-1)。這樣,算法就可以自回歸的運算下去。

  卡爾曼濾波器的原理基本描述了,式子1,2,3,4和5就是他的5 個(gè)基本公式。根據這5個(gè)公式,可以很容易的實(shí)現計算機的程序。

  下面,我會(huì )用程序舉一個(gè)實(shí)際運行的例子。。。

  4、簡(jiǎn)單例子(A Simple Example)

  這里我們結合第二第三節,舉一個(gè)非常簡(jiǎn)單的例子來(lái)說(shuō)明卡爾曼濾波器的工作過(guò)程。所舉的例子是進(jìn)一步描述第二節的例子,而且還會(huì )配以程序模擬結果。

  根據第二節的描述,把房間看成一個(gè)系統,然后對這個(gè)系統建模。當然,我們見(jiàn)的模型不需要非常地精確。我們所知道的這個(gè)房間的溫度是跟前一時(shí)刻的溫度相同的,所以A=1。沒(méi)有控制量,所以U(k)=0。因此得出:

  X(k|k-1)=X(k-1|k-1) ……….. (6)

  式子(2)可以改成:

  P(k|k-1)=P(k-1|k-1) +Q ……… (7)

  因為測量的值是溫度計的,跟溫度直接對應,所以H=1。式子3,4,5可以改成以下:

  X(k|k)= X(k|k-1)+Kg(k) (Z(k)-X(k|k-1)) ……… (8)

  Kg(k)= P(k|k-1) / (P(k|k-1) + R) ……… (9)

  P(k|k)=(1-Kg(k))P(k|k-1) ……… (10)

  現在我們模擬一組測量值作為輸入。假設房間的真實(shí)溫度為25度,我模擬了200個(gè)測量值,這些測量值的平均值為25度,但是加入了標準偏差為幾度的高斯白噪聲(在圖中為藍線(xiàn))。

  為了令卡爾曼濾波器開(kāi)始工作,我們需要告訴卡爾曼兩個(gè)零時(shí)刻的初始值,是X(0|0)和P(0|0)。他們的值不用太在意,隨便給一個(gè)就可以了,因為隨著(zhù)卡 爾曼的工作,X會(huì )逐漸的收斂。但是對于P,一般不要取0,因為這樣可能會(huì )令卡爾曼完全相信你給定的X(0|0)是系統最優(yōu)的,從而使算法不能收斂。我選了 X(0|0)=1度,P(0|0)=10。

  該系統的真實(shí)溫度為25度,圖中用黑線(xiàn)表示。圖中紅線(xiàn)是卡爾曼濾波器輸出的最優(yōu)化結果(該結果在算法中設置了Q=1e-6,R=1e-1)。

  ××××××××××××××××××

  附matlab下面的kalman濾波程序:

  clear

  N=200;

  w(1)=0;

  w=randn(1,N)

  x(1)=0;

  a=1;

  for k=2:N;

  x(k)=a*x(k-1)+w(k-1);

  end

  V=randn(1,N);

  q1=std(V);

  Rvv=q1.^2;

  q2=std(x);

  Rxx=q2.^2;

  q3=std(w);

  Rww=q3.^2;

  c=0.2;

  Y=c*x+V;

  p(1)=0;

  s(1)=0;

  for t=2:N;

  p1(t)=a.^2*p(t-1)+Rww;

  b(t)=c*p1(t)/(c.^2*p1(t)+Rvv);

  s(t)=a*s(t-1)+b(t)*(Y(t)-a*c*s(t-1));

  p(t)=p1(t)-c*b(t)*p1(t);

  end

  t=1:N;

  plot(t,s,'r',t,Y,'g',t,x,'b');



關(guān)鍵詞: 卡爾曼 濾波器

評論


相關(guān)推薦

技術(shù)專(zhuān)區

關(guān)閉
国产精品自在自线亚洲|国产精品无圣光一区二区|国产日产欧洲无码视频|久久久一本精品99久久K精品66|欧美人与动牲交片免费播放
<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>