探討有關(guān)物位計測量技術(shù)的研究
引言
本文引用地址:http://dyxdggzs.com/article/193035.htm調頻連續波( frequency modulated contin - uous wave,FMCW)雷達是一種通過(guò)對連續波進(jìn)行頻率調制來(lái)獲得距離與速度信息的雷達體制系統,由于它具有無(wú)距離盲區、高分辨率和低發(fā)射功率等優(yōu)點(diǎn),近年來(lái)受到了人們的廣泛關(guān)注。
一、物位測量技術(shù)發(fā)展
物位測量技術(shù)經(jīng)歷了結構上從機械式儀表向電子式儀表發(fā)展,以及工作方式上由接觸式向非接觸式發(fā)展的階段。
物位儀表的分類(lèi)如圖1所示。

圖1中,前4種測量技術(shù)都屬于接觸式測量方法,第5種輻射法為非接觸測量方法。其中,直視法是指眼睛可以直接觀(guān)測到介質(zhì)容量變化的一類(lèi)方法;測力法是指通過(guò)被測介質(zhì)對指示器或傳感器等目標施加外力來(lái)測量的方法;壓力法是由被測介質(zhì)施加在測量探頭而產(chǎn)生壓力進(jìn)行測量的方法;電特性法是利用被測介質(zhì)的電特性進(jìn)行測量的方法;輻射法采用電磁頻譜原理技術(shù)。
前4種方法需要測量?jì)x器的全部或一部分部件與被測介質(zhì)(固體或液體物料)相接觸才能達到測量的目的。從長(cháng)期來(lái)看,物料粘附物及沉積物會(huì )對這些機械部件產(chǎn)生附著(zhù),當物料為腐蝕性或易產(chǎn)生水銹的介質(zhì)時(shí),對儀器精度的影響將更加嚴重。在工業(yè)生產(chǎn)中,對物位儀表最基本的要求是高精度和高可靠性,這就需要有應用范圍更大、精度更高的技術(shù)出現。
二、TOF測量原理
近幾年來(lái),發(fā)展較快的是行程時(shí)間或傳播時(shí)間ToF ( time of flight )測量原理,又稱(chēng)回波測距原理。它是利用能量波在空間中的傳播時(shí)間來(lái)進(jìn)行度量的一種方法。能量波在信號源與被測對象之間傳遞,能量波到達被測對象后被反射并返回到探頭上被接收,屬于非接觸測距。
ToF 測量技術(shù)可以利用的能量波有機械波(聲或超聲波)、電磁波(通常為K波段或X波段的微波)和激光(通常為紅外波段的激光),相應的物位計稱(chēng)為超聲波物位計、微波物位計和激光物位計。
天線(xiàn)發(fā)射器向距離為R被測量物料發(fā)射能量波,經(jīng)被測量介質(zhì)反射,由天線(xiàn)的接收器接收。能量波來(lái)回所經(jīng)過(guò)的時(shí)間用td表示,可得到距離R與時(shí)間td 的關(guān)系為:td=2R/c (l) 式中:c為空氣中能量波的傳播速度,當以聲波為能量源時(shí),c=340m/s;當以電磁波為能量源時(shí),c=3×l08m/s。非接觸測量方法正是利用式(l)中距離R與時(shí)間td的關(guān)系,以不同的方式通過(guò)時(shí)間差td求得距離R的。
三、雷達物位計分類(lèi)
盡管輻射法物位計都是采用ToF測量原理,但所采用的能量波不同時(shí),信號的反射機理及在信號處理等方面都有很大的不同。以現在常用的超聲波和微波物位計為例,它們都采用ToF測量原理,都需要一個(gè)信號發(fā)生器和一個(gè)回波信號接收器,但兩種能量波在頻率范圍、反射方法以及對于包含距離信號的反射波的處理上都有比較大的差別。
3.1 超聲波物位計與微波物位計
電磁波的波段非常寬,從3kHz~3000GHz ,微波是指頻率為300MHz~300CHz的電磁波。在物位檢測中,微波使用的頻段規定在4~30GHz:之間,典型波段為5.8GHz、10GHz 、24GHz。5.8 GHz 的頻率屬于C波段微波;10GHz的頻率屬于X波段微波;24GHz的頻率屬于K波段微波。
聲波是機械波,頻率范圍為20Hz~20kHz ,因此,當聲波的振動(dòng)頻率高于20kHz或低于20kHz時(shí),我們便聽(tīng)不見(jiàn)了。我們把頻率高于20kHz 的聲波稱(chēng)為“超聲波”。
電磁波與聲波產(chǎn)生的原理是不同的,聲波是靠物質(zhì)的振動(dòng)產(chǎn)生的,在真空中不能傳播;而電磁波是靠電子的振蕩產(chǎn)生的,其本身就是一種物質(zhì),傳播不需要介質(zhì),能在真空中傳播。這兩種波在通過(guò)不同的介質(zhì)時(shí)都會(huì )發(fā)生折射、反射、繞射和散射及吸收等現象,物位計正是應用這種特性來(lái)測量距離的。
超聲波物位計由聲納技術(shù)衍化而來(lái),其安裝方式有頂部安裝和底部安裝兩種。早期的超聲物位計采用的也是液體導聲,超聲探頭安裝在料罐底部外,超聲波從底部傳入,經(jīng)被測液體傳播到液面,反射后傳回探頭。超聲波傳播時(shí)間與液位的高低成正比。由于超聲波在各種被測介質(zhì)中傳播的聲速不同,所以很難做成通用產(chǎn)品;且料罐底部(尤其是液體料罐的底部)安裝探頭的方法在實(shí)用中往往也有困難。因此,在實(shí)際工業(yè)過(guò)程中,利用空氣作為導聲介質(zhì)的頂部安裝應用越來(lái)越廣泛。
超聲波物位計的聲波信號是在不同聲阻率(聲阻率等于物料密度px聲速。)的界面上反射的。由于空氣和物料的密度差別很大,所以它們的聲阻率相差也很大,聲波在空氣和物料的分界面上就像在鏡面上一樣反射,并由接收器接收回波信號。但是,由于超聲波是機械波,在空氣中傳播的波長(cháng)小于17mm ,傳播速度受溫度影響較大,如當溫度為0℃ 時(shí),聲速為331.6m/s當溫度為20 ℃ 時(shí),聲速為 344m/s 。因此,必須進(jìn)行溫度補償,且在測量揮發(fā)性液體時(shí),由于空氣中含有的揮發(fā)組分不同,聲速也不同,也會(huì )產(chǎn)生較大的誤差。
與超聲波物位計相比,雷達物位計的微波信號是在不同介電常數的分界面上反射的。介電常數是表示絕緣能力特性的一個(gè)系數,以字母ε表示,單位為F/m ,它通常隨溫度和介質(zhì)中傳播的電磁波的頻率變化而變化。介電常數越大,對電荷的束縛能力越強;介電常數越小,則絕緣性愈好。某種電介質(zhì)的介電常數與真空介電常數之比εr稱(chēng)為該電介質(zhì)的相對介電常數。常見(jiàn)物料的相對介電常數如表1所示。

微波以光速傳播,速度幾乎不受介質(zhì)特性的影響,傳播衰減也很小,約0.2dB/km ?;夭ㄐ盘枏娙鹾艽蟪潭壬先Q于被測液面上的反射情況。在被測液面上的反射率除了取決于被測物料的面積和形狀外,主要取決于物料的相對介電常數εr。相對介電常數高,反射率也高,得到的回波強度高;相對介電常數低,物料會(huì )吸收部分微波能量,回波強度較低。對于普及型的雷達液位計,通常要求被測物料相對介電常數εr 〉4; 對于更低介電常數的物料,要求增設波導管來(lái)增強回波信號,或選用較復雜的雷達,通常測量下限為εr> 2。對于測量介電常數高或導電的物料時(shí),有效量程要下降很多,如20m量程的雷達物位計,若用于測量煤粉,有效量程最多為7m對于測量介電常數低的塑料粒子等,測量效果也不好。
波段開(kāi)關(guān)相關(guān)文章:波段開(kāi)關(guān)原理
液位計相關(guān)文章:磁翻板液位計原理
評論