<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>

新聞中心

EEPW首頁(yè) > 消費電子 > 設計應用 > 基于SOPC的視頻編解碼IP核的設計

基于SOPC的視頻編解碼IP核的設計

——
作者:白宗元 胡寶霞 時(shí)間:2007-10-11 來(lái)源:EEPW 收藏

摘  要:本論文介紹視中的設計,用Verliog 實(shí)現其各個(gè)功能子模塊,全部調試仿真通過(guò)合并成一個(gè)模塊,實(shí)現了視頻信號的采集,分配,存儲以及色度空間的轉換。整個(gè)模塊都通過(guò)仿真實(shí)現與驗證,很好的達到了系統的要求。

關(guān)鍵字;視;;  

引言


基于Nios II軟核的是Altera公司提出的片上可編程系統解決方案,它將CPU、存儲器、I/O接口、DSP模塊以及鎖相環(huán)的系統設計所必需的模塊集成到一塊FPGA上,構成一個(gè)可編程的片上系統,使設計的電路在其規模、可靠性、體積、功耗、功能、上市周期、開(kāi)發(fā)周期、產(chǎn)品維護以及硬件升級等多方面實(shí)現最優(yōu)化[1]。

目前在A(yíng)ltera SOPC Builder下集成了包括UART、SPI、Ethernet、SDRAM、Flash、DMA 等控制器的。此外,用戶(hù)也可以根據系統的需要自己設計或者購買(mǎi)第三方廠(chǎng)商的IP核,通過(guò)Avalon總線(xiàn)像搭積木一樣方便地將其捆綁在系統上。IP 核是經(jīng)過(guò)功能驗證的知識產(chǎn)權核,使用IP 核有以下優(yōu)勢:(1)提高設計性能;(2)降低產(chǎn)品開(kāi)發(fā)成本;(3)縮短設計周期;(4)設計靈活性強;(5)仿真方便;(6) OpenCore Plus 支持無(wú)風(fēng)險應用。

當然本論文所說(shuō)的IP 核功能沒(méi)有那么豐富,實(shí)際上就是一個(gè)功能驗證正確的用戶(hù)邏輯,和商業(yè)應用的IP 核還有一定的差距。本文的主要工作就是通過(guò)硬件描述語(yǔ)言描述了視頻信號的采集,分配,存儲以及色度空間的轉換等邏輯,并且驗證了功能的正確性。

1.視Camera_show原理

嵌入式攝像控制系統除了必要的電源電路以外,還要包括存儲電路、通信電路和下載電路等,所有的設備均與Avalon總線(xiàn)連接,這里主要介紹用戶(hù)邏輯接口Camera_show,它完成了模擬視頻數據轉化成數字視頻數據并在VGA上顯示的功能,主要包括模擬視頻信號的采集、分配(串并轉換電路完成)、存儲(存儲控制邏輯和片上RAM完成)和色度空間轉換。具體的功能框圖如圖1所示。


                   
               圖1 用戶(hù)邏輯Camera_show的原理框圖

2.IP 核Camera_Show設計

IP 核主要完成的功能包含視頻信號的采集、分配、存儲以及色度空間的轉換。模擬視頻信號經(jīng)過(guò)ADV7181B 后變成了符合ITU-R656 的YUV 數字信號,但是要對YUV 信號進(jìn)行處理必須將這三路信號分開(kāi)并行處理,所以需要采集分配這三路信號,這是2.1 的IP核需要實(shí)現的功能;由于模擬視頻信號是隔行掃描的,但是CRT 顯示器是逐行掃描,如果不加處理那么必然會(huì )導致行錯開(kāi),所以需要將數據進(jìn)行存儲,通過(guò)控制實(shí)現隔行變逐行,這是2.2 的IP 核需要實(shí)現的功能;最后經(jīng)過(guò)處理的YUV 三路數字信號,需要完成色度空間的轉換變成RGB 信號,這是2.3 的IP 核需要實(shí)現的功能。

2.1 YUV 信號的采集、分配[2]

在嵌入式攝像控制系統中,ADV7181主要承擔著(zhù)模擬攝像頭的視頻數據進(jìn)行解碼的任務(wù),將CVBS的等模擬信號轉化成ITU-R656標準的YUV信號。圖2給出了ADV7181的功能框圖。


 
圖2  ADV7181功能框圖

由圖可以看到,對于輸入的CVBS 等模擬信號經(jīng)過(guò)ADV7181B芯片轉換后輸出YUV 信號,行同步信號HS, 幀同步信號VS。這些就是需要的數字視頻信號,也就解決了數字視頻源的問(wèn)題。圖2 給出了YUV 信號的組成排列方式,“FF,00,00”作為AV 信號的開(kāi)始,所以需要構造一個(gè)檢測電路。注意到SAV 和EAV 均是FF , 00 , 00 開(kāi)頭但是XY 的值不一樣。根據芯片資料,XY[4]表示的是V ,即有用信號與空白信號的分界點(diǎn),如果V=0則表示的是SAV,否則是EAV 。XY[6]是場(chǎng)信號的區分標志。0 是奇場(chǎng),1 是偶場(chǎng)。

模擬信號的一行是1716 個(gè)CLOCK ,有用信號是1440 個(gè)CLOCK ,在信號采集和分配的過(guò)程中,僅需對有用信號進(jìn)行采集,所以利用檢測到SAV 作為一個(gè)標志,啟動(dòng)信號的分配過(guò)程是非常有必要的。
由于YUV 信號在模擬信號中是交織著(zhù)的,所以需要一個(gè)信號選擇電路。YUV 一共是三路信號,設計一個(gè)計數器進(jìn)行選擇,計數是O和2時(shí),是UV信號,計數是1 和3 時(shí)是Y 信號,完成的實(shí)際上是串行信號轉并行信號的過(guò)程。以上過(guò)程可以用圖3的原理框圖來(lái)表示。


                         
                   圖3  YUV信號的采集、分配原理圖

在硬件描述語(yǔ)言中,完成上述過(guò)程還是比較簡(jiǎn)單的。例如檢測電路,只要描述一個(gè)移位寄存器就可以了,具體代碼如下:
wire Y_check=((R3==8'hff)&&(R2==8'h00)&&(R1==8'h00))?1:0;
always@(posedge CLOCK)
begin
    RR1=TD_D; RR2=Rl; RR3=R2;
  end
always@(negedge CLOCK)
begin
    Rl=RR1; R2=RR2; R3=RR3;
  end

其中的wire 變量Y_check 就是當檢測到FF,00,00的時(shí)候就為1的標志。根據上文所述,區分SAV 和EAV 是根據XY[4]來(lái)決定,區分奇偶場(chǎng)是根據XY[7]來(lái)區分,所以只有隨后的信號是SAV 的時(shí)候,信號分配電路才有效,所以需要描述一段邏輯來(lái)判斷,代碼如下:
reg START,Field;
always@(posedge CLOCK)begin
  if(Y_check==1)
    begin
     START=~TD_D[4];
     Field=TD_D[6];
    end
  end

START信號就是開(kāi)始信號采集、分配的標志,只有當TD_D=0 也就是START= 1時(shí)信號分配電路才會(huì )工作。串轉并電路代碼如下:
reg [1:0] COUNTER;
always@(posedge CLOCK)begin
  if (!START)
     COUNTER=0;
  else COUNTER = COUNTER + 1;
  end
reg YPix_clock;
always@(posedge CLOCK) begin
   case(COUNTER)
    0 : begin Cbb=TD_D;YPix_clock=0;end
    1 : begin YY =TD_D;CCr =Crr;CCb=Cbb;YPix_clock=1;end
    2 : begin Crr=TD_D;YPix_clock=0;end
    3 : begin YY=TD_D;CCr=Crr;CCb=Cbb;YPix_clock=1;end
   endcase
  end

以上代碼完成了圖3的功能,輸入的信號名為T(mén)D_D,輸出的三路信號是Cbb , YY , Crr。注意到還有個(gè)YPix_clock,實(shí)際上是27M 的2 分頻,這個(gè)時(shí)鐘非常有用,在下面將詳細闡述。 {{分頁(yè)}}

2.2 YUV 信號的存儲

要將視頻信號隔行變逐行,有2 種解決方法:

第1種:將一幀的數據存儲下來(lái),根據奇偶場(chǎng)的不同(區分可以根據XY[7]),在寫(xiě)周期的時(shí)候,因為奇場(chǎng)的行之間有偶場(chǎng)的信號,所以寫(xiě)數據的時(shí)候需要跳地址寫(xiě),根據行同步信號(或者SAV也可以)來(lái)區分行,換行的時(shí)候地址要加額外的720(用來(lái)存放夾雜在奇場(chǎng)信號中的偶場(chǎng)信號),直到出現偶場(chǎng)信號(也就是XY[6]=1)地址切換為初始基地址加720,其余的同奇行的處理方法,具體的地址分配表參照圖4。


  
                       圖 4   地址分配表 

在讀周期只需要按照順序讀出就可以了,需要注意的是寫(xiě)時(shí)鐘是13.5M,讀時(shí)鐘是27M,而且對于Y、U、V信號要進(jìn)行分別存儲。

第2種:將一行的數據存儲下來(lái),因為1716 個(gè)時(shí)鐘周期剛好等于VGA 兩行的時(shí)間,所以在這段時(shí)間里可以將7加個(gè)有效視頻信號讀取2遍,以奇行的信號去取代偶行的信號,達到隔行變逐行的目的。在實(shí)現上只要是兩個(gè)RAM塊進(jìn)行乒乓操作就可以了,具體在后文闡述。

比較兩種實(shí)現方法,方法1的優(yōu)點(diǎn)在于圖像沒(méi)有失真,即奇偶行信號依舊相間在一起,方法2 卻不能做到這一點(diǎn),而且方法1 也可以通過(guò)乒乓方式提高運行的速度,但是由于讀寫(xiě)時(shí)鐘的不同步,每個(gè)存儲空間應當讀2遍。方法2也是讀2遍,但是是每行讀2遍,方法1是一幀數據讀2遍。

方法1的缺點(diǎn)在于存儲的數據量太大。一幀數據僅Y分量就是8bit*720*525 =3024000bit = 378KB,這個(gè)數據是不適合在SRAM中操作的,需要使用SDRAM,而操作SDRAM 是比較復雜的,所以一般考慮使用方法2,因為它需要很小的空間,而且可以利用FPGA的片內資源就可以實(shí)現。當圖像數據傳輸很快的時(shí)候,人眼基本上是分不清奇偶場(chǎng)信號的,所以方法2是可行的。在講方法2之前,需要了解在流水線(xiàn)操作中經(jīng)常使用的乒乓操作,這是可編程邏輯常用的設計思想和技巧。乒乓操作常常應用于數據流控制,典型的乒乓操作如圖5所示[3][4]。


 
圖5 乒乓操作示意圖

乒乓操作的處理流程描述如下:輸入數據流通過(guò)“輸入數據流選擇單元”,等時(shí)地將數據流分配到兩個(gè)數據緩沖模塊。數據緩沖模塊可以是任何存儲模塊,比較常用的存儲單元是雙口RAM ( DPRAM ),單口RAM ( SPRAM)和FIFO等。在第一個(gè)緩沖周期,將輸入的數據流緩存到“數據緩沖模塊1”。在第2個(gè)緩沖周期,通過(guò)“輸入數據流選擇單元”的切換,將輸入的數據流緩存到“數據緩沖模塊2”,與此同時(shí),將“數據緩沖模塊1”緩存的第1個(gè)周期的數據通過(guò)“輸出數據流選擇單元”的選擇,送到“數據流運算處理模塊”被運算處理。在第3 個(gè)緩沖周期,通過(guò)“輸入數據流選擇單元”的再次切換,將輸入的數據流緩存到“數據緩沖模塊1”,與此同時(shí),將“數據緩沖模塊2”緩存的第2個(gè)周期的數據通過(guò)“輸出數據流選擇單元”的選擇,送到“數據流運算處理模塊”被運算處理。如此循環(huán),周而復始。

乒乓操作的最大特點(diǎn)是,通過(guò)“輸入數據流選擇單元”和“輸出數據流選擇單元”按節拍、相互配合的切換,將經(jīng)過(guò)緩沖的數據流沒(méi)有時(shí)間停頓地送到“數據流運算處理模塊”,被運算和處理。把乒乓看成一個(gè)整體,站在這個(gè)模塊的兩端看數據,輸入數據流和輸出數據流都是連續不斷的,沒(méi)有任何停頓,因此非常適合對數據流進(jìn)行流水線(xiàn)式處理。所以乒乓方式常常應用于流水線(xiàn)式算法,完成數據的無(wú)縫緩沖與處理。

在FPGA里面,使用乒乓操作是面積與速度互換原則的一個(gè)體現。

方法2 可以這樣實(shí)現:在FPGA內部使用Megacore,構造一個(gè)雙口的RAM, 雙口RAM 的輸入輸出信號的硬件描述語(yǔ)言定義如下:

RAM2 u (.data_a (iDATA [7:0]) ,
.wren_a (I_a ) ,
.address_a(COUNTER_a [9 : 0] ) ,
.clock_a ( CLOCK_ a) ,
.q_a(DATA_a [ 7 : 0 ] ) ,
.data_b(iDATA[7:0]),
.wren_b (I_b),
.address_b(COUNTER_b[9:0]) ,
.clock_b(CLOCK_b) ,
.q_b(DATA_b[7:0]) ) ;

使用的信號包括:數據信號data_a, dat_b;讀寫(xiě)有效信號wren_a, wren_b;地址信號address_a, address_b;時(shí)鐘信號clock_a,clock_b;輸出數據信號q_a,q_b??梢钥吹剿械男盘柖际浅蓪Τ霈F的,就是為了進(jìn)行乒乓方式的數據傳輸。分成了兩個(gè)RAM區域,A 和B,相當于前面講乒乓方式里的數據緩沖模塊1 和2。兩個(gè)RAM 塊是交替著(zhù)讀寫(xiě)(由I_a和I_b決定),輸出數據流也是由I 決定。剛說(shuō)到寫(xiě)時(shí)鐘是13.5M,讀時(shí)鐘是27M,所以clock_a 和clock_b必須是讀寫(xiě)時(shí)鐘切換著(zhù)輸入,而且地址的計數也不一樣,寫(xiě)周期時(shí)候地址增加的時(shí)鐘是13.5M,讀周期地址增加的時(shí)鐘是27M。所以每行的數據讀了兩遍,相當于隔行變逐行。圖6是在Quartus II下RAM的乒乓操作功能仿真圖:



 
             圖6 RAM的乒乓操作仿真圖 {{分頁(yè)}}
RAM塊進(jìn)行乒乓方式操作信號的分配表如下: 



最后輸出的DATA信號進(jìn)入下一級單元,即YUV到RGB的轉換。

2.3 顏色-空間轉換部分設計[5]

為什么要有這個(gè)轉換呢?因為不論是電視機還是CRT顯示器,都是使用RGB三基色合成的方法來(lái)顯示顏色。用RGB三基色來(lái)表示彩色的確很直觀(guān),但是如果把這種方法用作圖像傳輸則絕不是一個(gè)好方法。主要是因為:
(1)    與黑白圖像不兼容;
(2)    占用太多帶寬;
(3)    抗干擾能力差。

本系統圖像傳感器輸出YCbCr信號,需要進(jìn)行到RGB信號的轉換,用于CRT顯示。YCbCr 到RGB按照下面公式進(jìn)行轉換:
R = 1.164 ( Y-16 ) + 1.596 ( Cr-128 );
G = 1.164 ( Y-16 )- 0.813 ( Cr-128 ) - 0.392(Cb-128);
B = 1.164 ( Y-16 ) + 2.017 ( Cb-128 );

觀(guān)察上面公式可以發(fā)現,轉換均需要乘加運算,并且式子中用到了小數,所以必須要對系數進(jìn)行放大。經(jīng)過(guò)合理轉化,公式如下:
R  =  (1/256) * ( 298*Y + 409*Cr - 57065 );
G  =  (1/256) * ( 298*Y - 100*Cb - 208*Cr + 34718 );
B  =  (1/256) * ( 298*Y + 516*Cb - 70861 );

 編寫(xiě)代碼,實(shí)現YUV到RGB的轉化。其中共包括3個(gè)模塊跟1個(gè)仿真激勵。在模塊const_mult中,主要實(shí)現乘法運算,主要代碼如下:
module const_mult (Clock, ClockEnable, Reset, Color, Color_Out);
  parameter IN_SIZE   =  8;
  parameter OUT_SIZE  = 16;  // output size width (integer)
  parameter CST_MULT  = 66;  // constant multiplicand (integer)
?。?
always @(posedge Clock or posedge Reset)
    begin : COLOR_KCM
     if (Reset)
      Color_Out <= 0; 
     else if (ClockEnable)
      Color_Out <= CST_MULT * Color; 
   end
endmodule

模塊csc.v中,調用const_mult模塊,通過(guò)參數傳遞改變參數IN_SIZE, OUT_SIZE, CST_MULT的值,然后實(shí)現加法運算。

以R  =  (1/256) * ( 298*Y + 409*Cr - 57065 )為例,主要代碼如下:
const_mult #(8, 18, 298)   R_KCM_Y(.Clock(Clock),                         .ClockEnable(ClockEnable), .Reset(Reset), .Color(Y),.Color_Out(R_Y_KCM)); 
const_mult #(8, 18, 0  )   R_KCM_Cb(.Clock(Clock),                             .ClockEnable(ClockEnable), .Reset(Reset), .Color(Cb),.Color_Out(R_Cb_KCM)); 
const_mult #(8, 18, 409)   R_KCM_Cr(.Clock(Clock),                             .ClockEnable(ClockEnable), .Reset(Reset), .Color(Cr),.Color_Out(R_Cr_KCM)); 
// Adder for (Cr + constant)
  always @(posedge Clock or posedge Reset)
  begin : R_Cr_C_Adder
    if (Reset)
      R_Cr_C <= 0; 
    else if (ClockEnable)
      R_Cr_C <= R_Cr_KCM - 57065; 
  end 
// Adder for (Y + Cb)
  always @(posedge Clock or posedge Reset)
  begin : R_Y_Cb_Adder
    if (Reset)
      R_Y_Cb <= 0; 
    else if (ClockEnable)
      R_Y_Cb <= R_Y_KCM + R_Cb_KCM; 
  end 
// Adder for R => Y + Cb + constant
  always @(posedge Clock or posedge Reset)
  begin : R_Adder
    if (Reset)
      R_full <= 0;
    else if (ClockEnable)
      R_full <= R_Y_Cb + R_Cr_C; 
  End
用以實(shí)現G、B的代碼與上面類(lèi)似,在此不再贅述。以下代碼實(shí)現R_full*1/256功能。
always @(R_full or G_full or B_full)
  begin
    if(R_full[17])    R = 0;
    else if(R_full[16]) R = 255;
    else  R = R_full [15:8]; 
    ……
  end

主模塊yuv2rgb實(shí)現子模塊的調用,用Modelsim進(jìn)行了仿真。仿真波形如圖7所示:

 

  
                      圖7   YUV到RGB的轉化仿真圖

3.結論

本文設計了基于SOPC的控制器IP核,根據自頂向下的設計思想,將IP核進(jìn)行層次功能劃分,并對IP核的仿真驗證,實(shí)現了視頻信號的采集,分配,存儲以及色度空間的轉換。本IP核具有很好的移植性,可以方便的應用到以Nios II為核心的各種需要視頻編解碼控制器功能的嵌入式中。

參考文獻
[1] 徐光輝,程東旭,黃如.基于FPGA的嵌入式開(kāi)發(fā)與應用.北京:電子工業(yè)出版社,2006.
[2] Iain E.G.Richardson.視頻編解碼器設計.長(cháng)沙:國防科學(xué)技術(shù)大學(xué)出版社,2005.
[3] 吳繼華,王誠.Altera FPGA/CPLD設計(高級篇).北京:人民郵電出版社,2005:19~22.
[4] 夏宇聞. 數字系統設計教程.北京:北京航空航天大學(xué)出版社,2003.
[5] Uwe Meyer-Bases.數字信號處理的FPGA實(shí)現.北京:清華大學(xué)出版社,2003:123~145.

模擬信號相關(guān)文章:什么是模擬信號




評論


相關(guān)推薦

技術(shù)專(zhuān)區

關(guān)閉
国产精品自在自线亚洲|国产精品无圣光一区二区|国产日产欧洲无码视频|久久久一本精品99久久K精品66|欧美人与动牲交片免费播放
<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>