提高電感傳感器測量靈敏度的方法
電感位移傳感器被廣泛應用于微小位移量檢測中,但在一些工程中現有傳感器的測量精度和靈敏度達不到測量要求。針對這一問(wèn)題,對傳感器前段信號處理電路進(jìn)行改進(jìn),在傳感器上下線(xiàn)圈并聯(lián)電容形成LC電路,利用LC電路諧振效應改善電路的性能,以提高信號源頭的靈敏度;采用Multisim軟件對半橋和全橋電路在并聯(lián)不同大小的電容后的性能進(jìn)行仿真,并用Matlab對生成的曲線(xiàn)進(jìn)行最小二乘擬合,比較得出使電路性能最優(yōu)的電容值和并聯(lián)方法。結果表明在損失微小線(xiàn)性度的情況下可將靈敏度提高一倍。
電感位移傳感器的實(shí)質(zhì),是將敏感元件的變化量轉化成電壓幅值的變化量來(lái)進(jìn)行測量,其廣泛應用于檢測微小位移量的檢測系統中,因此對電感傳感器的測量精度和靈敏度要求很高。電感位移傳感器的靈敏度是指輸出電壓的增量與側頭位移增量的比。在其他條件相同的情況下提高靈敏度可以提高系統的最小分辨率和精度。提高電感傳感器靈敏度的方式有多種,但目前主要都是通過(guò)對電感傳感器的信號調理電路的改進(jìn)來(lái)實(shí)現。文中嘗試通過(guò)諧振電路改變傳感器的輸出信號,從信號源頭增大傳感器靈敏度。這種方法相當于對傳感器本身進(jìn)行改進(jìn),使得它還可以與其他改進(jìn)技術(shù)如:傳感器激勵源、輸出信號處理、計算機軟件補償等兼容以共同提高整個(gè)系統的性能。
1 改進(jìn)后電路的模型建立
1.1 半橋式改進(jìn)電路
如圖1如果沒(méi)有C1和C2為普通半橋電路,虛線(xiàn)框中為電感傳感器的等效電路,傳感器測頭的位移帶動(dòng)螺線(xiàn)管中鐵芯上下移動(dòng),從而改變上下兩個(gè)線(xiàn)圈的電感值。將兩線(xiàn)圈等效成純電阻和純電感的串聯(lián),如圖中R1和L1組成上線(xiàn)圈,R2和L2組成下線(xiàn)圈,輸出接在上線(xiàn)圈上。實(shí)際傳感器中線(xiàn)圈與輸出的接線(xiàn)不會(huì )變,只是通過(guò)鐵芯移動(dòng)來(lái)改變電感,所以R1和R2固定不變。輸出電壓
圖1在上下兩個(gè)線(xiàn)圈并聯(lián)電容C1和C2后,分別形成了諧振回路I和回路II。如果鐵芯在最下方時(shí):回路II諧振,回路I失諧。當鐵芯在最上方時(shí):回路I諧振,回路II失諧。由于諧振電路在諧振時(shí)的阻抗會(huì )遠大于失諧時(shí)的阻抗??梢远ㄐ缘氐贸?,鐵芯在最下方時(shí)Uout的幅值會(huì )比沒(méi)有電容小,在最上方時(shí)會(huì )比沒(méi)有電容時(shí)大,所以靈敏度會(huì )增大。但在最下方和最上方中間的變化情況,以及它的線(xiàn)性度則需要后邊仿真來(lái)確定。輸出電壓
1.2 全橋式改進(jìn)電路
普通全橋電路圖2(a),傳感器上下兩線(xiàn)圈分別與匹配電阻R3和R4相連,在L1=L2時(shí)電橋平衡,當向上發(fā)生△X的位移時(shí),鐵芯上移,L1增大△L,L2減小△L,Uout的變化會(huì )比半橋方式增加近兩倍,輸出電壓
評論