<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>

新聞中心

EEPW首頁(yè) > 智能計算 > 設計應用 > 通向量子引力的路,又寬了一點(diǎn)點(diǎn)

通向量子引力的路,又寬了一點(diǎn)點(diǎn)

作者:董唯元 時(shí)間:2022-12-09 來(lái)源:反樸 收藏

二維共形場(chǎng)理論一直是重要的理論物理前沿研究工具之一,尤其是其中的劉維爾共形場(chǎng)理論,更是與存在著(zhù)千絲萬(wàn)縷的直接聯(lián)系。借助共形自舉方法,劉維爾共形場(chǎng)已經(jīng)可以非微擾的精確求解。然而,它的關(guān)鍵方程竟然是猜出來(lái)的,直至最近幾年,數學(xué)家才給了出嚴格的證明。數學(xué)家與物理學(xué)家,對量子場(chǎng)論的深意又多了一點(diǎn)了解。

本文引用地址:http://dyxdggzs.com/article/202212/441441.htm

理論是物理學(xué)界公認的圣杯,一直吸引著(zhù)我們這顆星球上最頂級的一批智慧頭腦為之不斷探索。如今聰慧的科學(xué)家早已能夠駕輕就熟地應用量子理論和廣義相對論,乃至日常生活都能發(fā)現它們的身影,然而隱藏在這兩個(gè)理論背后的宇宙奧秘,卻仍然顯得那么渺遠難測。

2003 年的時(shí)候,美國物理學(xué)家,圈的奠基者之一,李?斯莫林(Lee Smolin)曾在他的科普著(zhù)作《宇宙的本源》(Three Roads to Quantum Gravity)結尾處樂(lè )觀(guān)地展望:“到 2010 年,至多到 2015 年,我們應該已經(jīng)擁有量子引力理論的基本框架…… 在擁有這個(gè)理論的 10 年之內,能夠檢測它的新型實(shí)驗將會(huì )被發(fā)明出來(lái)…… 到 21 世紀末,全球的高中生都將學(xué)習引力的量子理論?!比缃窕赝?,斯莫林的預言顯然過(guò)于樂(lè )觀(guān)了。

也許最能體現量子理論與引力理論之間鴻溝的,就是宇宙暗能量這個(gè)概念。依照廣義相對論,加速膨脹的宇宙昭示著(zhù)真空具有能量,也就是愛(ài)因斯坦方程中的“宇宙常數”不為零。同時(shí)依照量子場(chǎng)論,真空也具有非零的能量,這已經(jīng)被卡西米爾效應(Casimir effect)實(shí)驗所證實(shí)。如此看來(lái),兩個(gè)理論似乎都不約而同地給出了真空能量,然而實(shí)際上二者給出的數值相差了 120 個(gè)數量級!注意不是 120 倍,而是 120 個(gè)數量級,也就是 10120 倍。企圖用真空零點(diǎn)能解釋宇宙常數的努力,成了物理學(xué)中最離譜的猜測。

然而我們的宇宙不可能有兩種真空,于是“宇宙暗能量”這個(gè)概念就被提了出來(lái),以彌合兩個(gè)理論對真空能量描述上的巨大分歧。暗能量之所以稱(chēng)之為“暗”,就是因為它既不在量子理論框架之內,也不能由引力理論解釋。這個(gè)占據宇宙總能量 70% 的神秘缺口,或許只能等待未來(lái)的量子引力理論去縫合。

“降維打擊”

在探索量子引力的道路上,充滿(mǎn)了現有數學(xué)工具難以逾越的障礙,于是研究者們一邊努力構建新工具,一邊也在嘗試簡(jiǎn)化問(wèn)題的迂回方法,二維模型就是最為常用的迂回手段之一。

將高維降至二維最顯而易見(jiàn)的好處,就是運算處理的大幅度簡(jiǎn)化。比如,在二維平面內,幾次轉動(dòng)操作之間可以隨意地交換順序,最終的操作結果并不會(huì )因順序的改變而受到影響。而在三維或更高維的空間中,多個(gè)轉動(dòng)操作之間不能隨意交換順序??梢?jiàn)二維空間比高維空間所受的限制更少,在處理復雜計算時(shí)可以騰挪的余地也就更大。

當然轉動(dòng)操作只是一個(gè)不入流的例子,研究者們真正青睞的是一種名為“共形變換(Conformal transformations)”的操作。這種操作也稱(chēng)“保角變換”,顧名思義就是在扭曲變形的時(shí)候能夠保持任意兩條線(xiàn)的夾角不變。比如下圖所示的這個(gè)變換,就是個(gè)典型的共形變換。在變換之后,每根藍色線(xiàn)與每根紅色線(xiàn)仍然保持垂直。

如果你是第一次聽(tīng)到“共形變換”這個(gè)名詞,也不要被這唬人的名字嚇到??纯瓷蠄D中那些彎曲的線(xiàn)條,是否讓你聯(lián)想到中學(xué)課本上的電場(chǎng)線(xiàn)和磁場(chǎng)線(xiàn)?再回想小時(shí)候用紙上的鐵屑顯示磁力線(xiàn)的那個(gè)小實(shí)驗。其實(shí),當你手握兩塊磁鐵隨意移動(dòng)時(shí),紙上那些鐵屑圖案的變化,正是一種共形變換。

物理學(xué)家在研究場(chǎng)的時(shí)候,非常需要共形變換的輔助。每一個(gè)共形變換中的不變量,本質(zhì)上都是一種對稱(chēng)性的體現,就像鏡像反轉或空間平移的對稱(chēng)性一樣。而對稱(chēng)性正是物理學(xué)家最喜歡的內容,每增加一個(gè)對稱(chēng)性,物理學(xué)家就可以多寫(xiě)出一條約束系統的方程。未知數的個(gè)數沒(méi)有增加,而方程的數量增加了,求解出答案的希望當然也就隨之增加了。

各種共形變換和共形對稱(chēng)性是如此的重要,以至于 CFT(共形場(chǎng)理論,Conformal field theory)已經(jīng)成為一門(mén)應用廣泛的基礎科目。不僅在量子場(chǎng)論和引力理論中,而且在凝聚態(tài)物理和熱力學(xué)等理論中,都是不可或缺的重要工具。尤其是在 20 世紀末 Ads / CFT 對偶關(guān)系被發(fā)現之后,CFT 的重要程度又進(jìn)一步提升。

雖然共形場(chǎng)不僅限于二維,但對急于求解方程的研究者來(lái)說(shuō),二維共形場(chǎng)無(wú)疑是最友善的對象。因為只有在二維面上,才有無(wú)限多種共形變換,而在更高維度的空間中,只能存在有限種共形變換,所以二維共形場(chǎng)所蘊含的威力尤為強大。有些情況下,研究者甚至可以?huà)侀_(kāi)其他因素,僅依靠這些對稱(chēng)性本身,就足以進(jìn)行精確求解。

非微擾的求解方法

早在 20 世紀 70 年代,俄羅斯物理學(xué)家 Alexander Polyakov 就被二維共形場(chǎng)的強大威力所吸引,提出了一種全新的求解量子場(chǎng)的方法 —— 共形自舉(conformal bootstrap)。這種方法的基本思想,是把求解過(guò)程拆解為逐級爬樓梯。先選定一個(gè)三點(diǎn)結構作為基礎,然后再增加第四個(gè)點(diǎn),繼而增加第五個(gè)點(diǎn)…… 這樣求解的過(guò)程表面看似繁瑣,實(shí)則卻解決了一個(gè)困擾專(zhuān)業(yè)人士已久的難題。

傳統求解量子場(chǎng)的基本思路,或直接或間接地繼承自古老的分析力學(xué)和經(jīng)典場(chǎng)論,即從拉格朗日量或者哈密頓量出發(fā)展開(kāi)運算。其中用到的正則量子化和費曼路徑積分等技巧,也是以拉氏量和哈氏量為基礎。這套方法非常皮實(shí)耐用,許多關(guān)鍵環(huán)節已經(jīng)被古圣先賢們反復打磨鋪墊就緒,對后來(lái)者的我們來(lái)說(shuō),幾乎就剩下代入具體情況無(wú)腦傻算。

然而這個(gè)套路在量子場(chǎng)論中卻有個(gè)缺陷,那就是場(chǎng)之間的相互作用不能太強,最好是完全沒(méi)有相互作用的自由場(chǎng)。這就好比一套求解物體運動(dòng)狀態(tài)的方法,其實(shí)只能求解勻速直線(xiàn)運動(dòng)。當處理勻速圓周運動(dòng)時(shí),就把那個(gè)垂直于運動(dòng)方向的加速度當作一個(gè)高階修正項補充進(jìn)來(lái)。而如果遇到變速圓周運動(dòng),就得再補充更多的修正項。

這種補丁摞補丁的做法,專(zhuān)業(yè)術(shù)語(yǔ)上稱(chēng)為“微擾”。意思就是說(shuō),把所有場(chǎng)間相互作用和其他約束條件,都看做對自由場(chǎng)的“微小擾動(dòng)”,由此所產(chǎn)生的效果,都只體現在那些修正項中。顯然,當我們遇到非常強的相互作用時(shí),微擾方法就會(huì )失靈,不能提供符合實(shí)際情況的結論。

而前面提到的共形自舉方法,則是一種非微擾的套路,可以求解許多強耦合的量子場(chǎng)。在 20 世紀 80 年代初,Polyakov 和他的兩位合作者 Belavin 和 Zamolodchikov 共同發(fā)表了一篇重要論文,論文中給出了求解一系列二維共形場(chǎng)的框架,向研究者們展示出這一方法的強大力量。自此,以三位作者命名的 BPZ 方程,就成了 CFT 發(fā)展歷程中的一個(gè)里程碑。

從 N-1 個(gè)點(diǎn)邁向 N 個(gè)點(diǎn)的 BPZ 方程長(cháng)成下面這個(gè)樣子:


看不懂也沒(méi)關(guān)系,本文也沒(méi)打算真的解釋這個(gè)方程的含義,列出這個(gè)方程純粹是為了滿(mǎn)足部分讀者的好奇心。順便顯擺作者使用搜索引擎的能力。

沿著(zhù) BPZ 方程所搭建的梯子,許多傳統微擾手段無(wú)法挖掘的寶藏,現在都可以用共形自舉來(lái)挖掘。在這些寶藏之中,有一個(gè)特殊的二維共形場(chǎng)與量子引力理論關(guān)系非常密切,它就是“劉維爾場(chǎng)(Liouville field)”。

作為一個(gè)二維共形場(chǎng),劉維爾場(chǎng)當然是個(gè)如假包換的量子場(chǎng)。同時(shí),劉維爾場(chǎng)的經(jīng)典極限,又自然地給出愛(ài)因斯坦方程的二維版本。所以,劉維爾場(chǎng)自身就是一個(gè)漂亮的二維量子引力理論。不僅如此,劉維爾場(chǎng)還可以描述玻色弦在二維面內的激發(fā),從而可視為弦理論所構建的量子引力模型中的一部分。另外,透過(guò) Ads / CFT 對偶關(guān)系,劉維爾場(chǎng)還是一個(gè)三維彎曲時(shí)空內的引力描述。

上面一段話(huà)可能會(huì )讓非理論物理專(zhuān)業(yè)的讀者有些暈頭轉向,其實(shí)拋開(kāi)所有專(zhuān)業(yè)術(shù)語(yǔ)來(lái)說(shuō),就是與量子引力理論相關(guān)的許多項研究中,都會(huì )閃現劉維爾場(chǎng)的身影。所以我們憑感覺(jué)就會(huì )知道,這個(gè)劉維爾場(chǎng)必定與量子引力的關(guān)系非常密切。要想了解量子引力的更多秘密,劉維爾場(chǎng)肯定是個(gè)極有價(jià)值的切入口。

既然有共形自舉這個(gè)利器在手,劉維爾場(chǎng)的求解似乎唾手可得,可是這里面還有一個(gè)難題阻礙著(zhù)研究的進(jìn)展,那就是 BPZ 階梯起步的那個(gè)三點(diǎn)結構必須精確表述,同時(shí)還得滿(mǎn)足一系列約束條件。如果只是用路徑積分和微擾方法來(lái)計算,就從源頭上失去了“非微擾”的主旨。然而這個(gè)結構常數的尋找,卻頗費了一番力氣。直到 20 世紀 90 年代,才有兩組研究者不約而同地給出了確定這個(gè)結構常數的公式。這個(gè)公式被命名為 DOZZ 公式,代表兩組研究者 Dorn、Otto 和 Zamolodchikov、Zamolodchikov。

這里沒(méi)有筆誤,后面兩位確實(shí)都姓 Zamolodchikov,其中一位就是 BPZ 中的那個(gè)“Z”,全名是 Alexander Zamolodchikov,另外一位是他的孿生兄弟 Alexei Zamolodchikov。順便提一句,BPZ 那三位雖然姓氏不同,但名字都叫 Alexander,也是挺有意思的巧合。

說(shuō)回 DOZZ 公式,借助這個(gè)公式作為起點(diǎn),研究者終于可以求解劉維爾場(chǎng)的關(guān)聯(lián)函數。但是這個(gè) DOZZ 公式的來(lái)歷,還是令人不夠滿(mǎn)意。因為這個(gè)復雜的公式竟然不是被推導出來(lái),而是被生生猜出來(lái)的,可謂繼承了頂級物理學(xué)家的優(yōu)良傳統。在 1996 年所發(fā)表的論文中,作者 Zamolodchikov 兄弟直接坦白地承認:

“需要強調的是,本節的論證與推導無(wú)關(guān)。這些更像是某種動(dòng)力,我們將提出的表達式作為一種猜測,在隨后的章節里我們會(huì )嘗試證實(shí)這種猜測。這個(gè)猜測看起來(lái)十分自然,甚至可能被那些關(guān)注這個(gè)問(wèn)題的人認為是顯而易見(jiàn)的?!?/span>

( “It should be stressed that the arguments of this section have nothing to do with a derivation. These are rather some motivations and we consider the expression proposed as a guess which we try to support in the subsequent sections. This guess appears quite natural and might even be thought obvious to those concerned with the problem.” )

如果不能從邏輯上嚴格推導出這個(gè)公式,就說(shuō)明我們還沒(méi)有真正理解它的意義。即使它能在劉維爾場(chǎng)的具體計算上幫我們許多忙,但終究難以提供揭示物理世界本質(zhì)的作用。

于是,一些研究者又開(kāi)始努力研究,試圖弄明白 DOZZ 公式到底能從哪個(gè)角度推導出來(lái)。這項任務(wù)的難度超出了許多人的預期,在 DOZZ 公式提出后的十多年里,一直沒(méi)有明顯的進(jìn)展。直到 2014 年之后的幾年間,才陸續出現了幾篇論文成果。

這些近幾年得到的 DOZZ 公式證明過(guò)程,都頗具跨界味道,使用了概率論方面的語(yǔ)言和工具,主要包括 GMC(Gaussian Multiplicative Chaos,高斯倍乘混沌)和 GFF(Gaussian Free Field,高斯自由場(chǎng))。

從這些證明中,我們也收獲了許多新的認識。原本以為隨機漲落導致的引力場(chǎng)自身強耦合,必然無(wú)法與路徑積分調和,然而借助一些來(lái)自概率論的工具,竟然可以將那些漲落的毛刺打磨得足夠光滑,并順利地兼容路徑積分。

當然,物理學(xué)家們的目標絕不僅僅是馴服二維平面內那些野蠻漲落的引力,而是攜馴服經(jīng)驗和工具出征,正面迎擊真實(shí)時(shí)空中的引力。

附:DOZZ 公式的樣子:



其中圖片是一種由多重伽馬函數定義的函數,比較省紙的寫(xiě)法是圖片

更直觀(guān)的寫(xiě)法是

這么復雜的公式居然是靠感覺(jué)猜出來(lái)的!這是多么強大的直覺(jué)!

參考文獻

  • [1] Kupiainen, Antti; Rhodes, Rémi; Vargas, Vincent (2017). "Integrability of Liouville theory: Proof of the DOZZ Formula". arXiv:1707.08785 [math.PR].

  • [2] Vargas, Vincent (2017). “Lecture notes on Liouville theory and the DOZZ formula”. arXiv:1712.00829 [math.PR]

  • [3] A.B.Zamolodchikov; Al.B.Zamolodchikov (1996).“Structure Constants and Conformal Bootstrap in Liouville Field Theory". DOI: 10.1016/0550-3213(96)00351-3. arXiv:hep-th/9506136



關(guān)鍵詞: 量子引力

評論


技術(shù)專(zhuān)區

關(guān)閉
国产精品自在自线亚洲|国产精品无圣光一区二区|国产日产欧洲无码视频|久久久一本精品99久久K精品66|欧美人与动牲交片免费播放
<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>