<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>

新聞中心

EEPW首頁(yè) > 光電顯示 > 設計應用 > PFC在反激照明驅動(dòng)中的工作原理

PFC在反激照明驅動(dòng)中的工作原理

作者: 時(shí)間:2016-12-04 來(lái)源:網(wǎng)絡(luò ) 收藏

隨著(zhù)照明技術(shù)的發(fā)展,LED走進(jìn)了人們的生活,由于其節能環(huán)保、使用壽命長(cháng),很快獲得了穩固的市場(chǎng)地位。但是如果要點(diǎn)亮LED,就需要恒定電流以及高功率因數。所以在LED的設計中,需要集成PFC單級反激式轉換器。PFC為功率因數校正的縮寫(xiě),是有效功率除以總耗電量(視在功率)的比值,它反應了電路當中電力被有效利用的程度。但是對一些LED新手來(lái)說(shuō),PFC方面的知識卻是沒(méi)有接觸過(guò)的,本篇文章就介紹了反激式LED中的PFC原理,希望對各位有所幫助。

本文引用地址:http://dyxdggzs.com/article/201612/325642.htm

在反激拓撲結構當中,PSR(初級端調節)是一種最為快捷高效的電路設計,它通過(guò)使用具有初級端調節(PSR)的單級拓撲來(lái)實(shí)現。在圖1中我們給出了高功率因數的單級PSR反激式LED驅動(dòng)的原理圖。

圖1:具有高功率因數的單級PSR反激式LED驅動(dòng)器

對于初級端調節,通常優(yōu)先使用非連續導通工作模式(DCM),因為它能提供極為精確的輸出調節。為了實(shí)現高功率因數和低總諧波失真(THD),通常會(huì )在開(kāi)關(guān)頻率固定的DCM反激式轉換器中采用恒定導通時(shí)間控制。圖2所示為初級端開(kāi)關(guān)電流、次級端二極管電流和MOSFET開(kāi)關(guān)極信號的典型理論波形。

圖2:DCM反激式PFC轉換器的時(shí)序和輸入電流

在導通時(shí)間恒定的條件下,平均輸入電流如下式所示:

此處,D為轉換器的開(kāi)關(guān)占空比,為反激變壓器的初級繞組電感。上式表明輸入電流波形始終跟隨輸入電壓。因此,轉換器實(shí)現單位功率因數。

然后,可通過(guò)下式計算RMS輸入電流:

為了保持DCM工作模式,最大占空比D必須滿(mǎn)足:

為了確保反激式轉換器在DCM模式下以單位功率因數工作,并具備低THD性能,通常使用匝數比相對較小的變壓器。這類(lèi)反激式變壓器會(huì )導致較小的開(kāi)關(guān)占空比,使流過(guò)MOSFET開(kāi)關(guān)和變壓器的峰值以及RMS電流變大,從而造成更多功耗損失。由于峰值開(kāi)關(guān)電流較高,因此需要用到相對較大的EMI濾波器。具有臨界導通工作模式(BCM)的反激式轉換器具有零電壓導通特性,可最大程度降低開(kāi)關(guān)損耗,因此常用作單級PFC轉換器。與DCM工作模式不同,BCM反激式方法由恒定導通時(shí)間和可變開(kāi)關(guān)頻率控制。這里PFC的BCM反激式方法適用于需要相對較高PF,但總體諧波失真(THD)并不低于10%的很多應用。下面的圖3顯示了其初級端開(kāi)關(guān)電流、次級端二極管電流和MOSFET柵極開(kāi)關(guān)信號的理論波形。

圖3: BCM反激式PFC轉換器的時(shí)序和輸入電流

平均輸入電流表述如下:

上文輸入電流等式中的分母使得電流波形呈現出明顯的非正弦形態(tài)。下面的圖4顯示了BCM反激式拓撲的輸入電流波形,其中RVR為參數。對輸入電流波形的諧波分析表明,若RVR為2,則很難獲得低于10%的THD。

圖4: 以RVR作為參數的BCM反激式拓撲輸入電流波形

在開(kāi)關(guān)的關(guān)斷期間,開(kāi)關(guān)上的最大電壓等于峰值輸入電壓加上反射電壓VR。因此,由于MOSFET開(kāi)關(guān)的額定電壓限制,RVR的可能值范圍僅為1(美國標準輸入電壓)和2~3(歐洲標準輸入電壓)。對于采用通用輸入電壓的照明應用而言,為了達到相對較低的THD,必須使用800 V甚至1000 V MOSFET,以使RVR比率盡可能低。它的開(kāi)關(guān)頻率也有可能變得非常高,尤其是在高輸入交流電壓的LED調光應用中。

綜合分析之后,我們可得出以下結論:

1.用于MOSFET峰值漏極電流的輸入電壓無(wú)需作為參考。如果導通時(shí)間在半周期間是恒定的,則峰值漏極電流將會(huì )隨著(zhù)輸入電壓的變化而變化。

2. 輸入電流波形不理想的主要原因是可變頻率,更確切地說(shuō)是可變占空比。在漏極電流波形相同的情況下,如果占空比在半周期間保持恒定,則輸入電流將會(huì )是正弦曲線(xiàn)。

反激式電路是目前比較經(jīng)濟且高效的一種電路。它不需要電路進(jìn)行電解電容的輸入和反饋電路的設定,并且只需要較少的外部元件,降低了整體成本,所以才會(huì )成為目前照明電路設計的主流。



關(guān)鍵詞: PFC反激照

評論


技術(shù)專(zhuān)區

關(guān)閉
国产精品自在自线亚洲|国产精品无圣光一区二区|国产日产欧洲无码视频|久久久一本精品99久久K精品66|欧美人与动牲交片免费播放
<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>