ADC分類(lèi)選擇及其前端配置技術(shù)
放大器通常產(chǎn)生的噪聲有多大?如何減少這些噪聲?
舉例考慮—個(gè)典型的放大器,例如ADA49371,如果設置增益G=1,那么輸出的噪聲譜密度在高頻部分是 ,與此頻帶可比的采樣速率為80MSPS的AD9446-802ADC的輸入噪聲譜密度是
。這里的問(wèn)題是,放大器的噪聲帶寬等于ADC的全帶寬(中心頻率位于500MHz),而ADC的噪聲又必須限制在第一奈奎斯特范區(40MHz)。在沒(méi)有濾波器的情況下,放大器的噪聲有效值是155μVrms,ADC的噪聲有效值是90μV。從理論上講,總系統的信噪比(SNR)降低了6dB。為了從實(shí)驗上證實(shí)這—點(diǎn),用ADA4937驅 動(dòng)的AD9446-80測量的SNR結果是76dBFS,本底噪聲是-118dB。如果改用變壓器來(lái)驅動(dòng)AD9446-80,測量SNR結果足82dBFS。因此用放大器驅動(dòng)ADC可將SNR降低6dB。
為了提高ADC的信噪比,在放大器和ADC之間加了一個(gè)濾波器。如果使用的是一個(gè)100 MHz的雙極點(diǎn)濾波器,放大器的總噪聲有效值變?yōu)?1 μV, 使ADC的信噪比僅降低3dB。使用雙極點(diǎn)濾波器改善了SNR達到79 dBFS,本底噪聲為-121dB。構建雙極點(diǎn)濾波器的方法是放大器的每個(gè)輸出引腳都串聯(lián)一個(gè)24Ω的電阻器和一個(gè)30 nH的電感器并且差分連接一個(gè)47pF的電容器,見(jiàn)圖5所示的使用外接雙極點(diǎn)噪聲濾波器的ADA4937放大器驅動(dòng)AD9446-80ADC原理圖。
圖5
3.2驅動(dòng)(△∑ )ADC的放大器配置技術(shù)
*輸入緩沖器技術(shù)
許多△∑轉換器包含了輸入緩沖器及可編程增益放大器(PGA)。輸入緩沖器增加了輸入阻抗,允許直接連接高源阻抗的信號??删幊淘鲆娣糯笃髟黾恿藴y量小信號時(shí)轉換器的精確度。橋接式傳感器就是在轉換器中利用了PGA優(yōu)勢的信號源的典型示例。
所有的ADC都需要一個(gè)基準,對于高分辨率的轉換器來(lái)說(shuō),擁有一個(gè)低噪聲、低漂移的基準是至關(guān)重要的。大多數的△∑轉換器都采用了差分基準輸入。
*舉例--以新型橋接傳感器作為△∑ADC的模擬前端的ADS1230/32/34型△∑ADC芯片。
用于橋接傳感器的完全模擬前端ADS1230/32/34型△∑ADC芯片是分別為精密型20位及24位 △∑ADC,具有一個(gè)板載超低噪聲可編程增益放大器(PGA)及內置振蕩器PGA支持用戶(hù)自選擇增益: 1、2。64、128。該ADC具有235位有效分辨率。由3階調制器及4階數字濾波器組成,支持10SPS及80SPS的數據率。器件的所有功能都可通過(guò)專(zhuān)用的I/O引腳控制,簡(jiǎn)化了運轉模式。圖6為ADS1230結構組成示意圖。
圖6
*主要特點(diǎn)
超低噪聲:10SP5時(shí)為17nVRMS(PGA=128),80SP5時(shí)為44n nVRMS(PGA=128)V;增益為64時(shí),無(wú)噪聲分辨率可達19.2位;優(yōu)異的50至60MHz抑制性能(于10SP5時(shí));單通道差分輸入為AD51230;雙通道差分輸入為AD51232;四通道差分輸入為AD51234;內置溫度傳感器,有簡(jiǎn)易的雙線(xiàn)串行數字接口;電源電壓范圍為2.7V至5.25V;封裝模式為:TSSOP-16封裝(AD51230),TSSOP-24封裝(AD51232),TSSOP-28封裝(AD51234)??稍诤馄?、應變測量與壓力傳感器及工業(yè)流程控制等設備上應用。
3.2驅動(dòng)逐次逼近型(SAR)ADC的放大器配置技術(shù)
現代的SAR ADC使用簡(jiǎn)化的電容接受輸入信號的電壓充電。由于A(yíng)DC存在輸入電容、輸入阻抗以及外部電路,因此需要一個(gè)穩定時(shí)間使采樣電容的電壓與所測量的電壓等值。最小化外部電路的源阻抗是降低的穩定時(shí)間的途徑之一,并同時(shí)確保了在A(yíng)DC的采集時(shí)間內輸入信號被準確的獲取。但是,另一個(gè)更為棘手的設計約束則是SAR ADC輸入端所具有的、用以驅動(dòng)電路的動(dòng)態(tài)負載。
當采用運算放大器驅動(dòng)器驅動(dòng)ADC輸入時(shí),運算放大器必需能承載這樣的動(dòng)態(tài)范圍,并在采集時(shí)間內穩定于所需要的精度范圍。
SAR ADC的基準輸入回路也會(huì )給基準電壓帶來(lái)相似的負載。盡管基準電壓被認為是非常穩定的直流電壓,但ADC基準輸入端所呈獻的動(dòng)態(tài)負載使得這樣的目標實(shí)現起來(lái)有了一定的難度。因此需要為基準電壓配備緩沖電路,并且為此所使用的運算放大器應與驅動(dòng)ADC輸入端的運算放大器有著(zhù)相似的要求。但實(shí)際上,此處對運算放大器的需求甚至要高于A(yíng)DC輸入端,因為基準輸入必需在一個(gè)時(shí)鐘周期內都保持穩定。部分轉換器將這樣的基準緩沖放大器內置于芯片中。在緩沖此類(lèi)輸入時(shí),采用具有低寬帶輸出阻抗的運算放大器是保持此類(lèi)轉換器精確度的最好方法。
評論