<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>
"); //-->

博客專(zhuān)欄

EEPW首頁(yè) > 博客 > 將光集成到硅芯片,有新思路

將光集成到硅芯片,有新思路

發(fā)布人:旺材芯片 時(shí)間:2023-01-30 來(lái)源:工程師 發(fā)布文章

來(lái)源:本文由半導體行業(yè)觀(guān)察(ID:icbank)編譯自datacenterdynamics,謝謝。



眾所周知,摩爾定律即將走到盡頭。隨著(zhù)越來(lái)越多的晶體管被封裝到每個(gè)硅芯片上,我們不能再期望處理器能力每?jì)赡攴环?br />


這對傳統 IT 來(lái)說(shuō)很不方便,傳統 IT 一直依賴(lài)摩爾定律的持續紅利。對于人工智能 (AI) 來(lái)說(shuō),這可能是一場(chǎng)災難,它正處于大規模擴張的邊緣……但這種擴張在很大程度上取決于快速處理。


一家初創(chuàng )公司認為,答案是將傳統硅與利用光運行的光子處理器相結合。



人工智能爆炸


LightMatter 首席執行官尼克·哈里斯 (Nick Harris) 表示,人工智能目前正處于快速增長(cháng)階段:“人們發(fā)現了無(wú)法滿(mǎn)足的用例。他們會(huì )盡可能多地索取,他們會(huì )花掉任何錢(qián)。谷歌、微軟、亞馬遜和 Facebook 將為這些東西付出任何代價(jià)?!?/p>


這是最近的發(fā)展。在經(jīng)歷了 1960 年代和 80 年代的激增之后,人工智能研究進(jìn)展緩慢。然后在 2012 年,由 Alex Krizhevsky 創(chuàng )建的名為 AlexNet 的神經(jīng)網(wǎng)絡(luò )贏(yíng)得了在低成本 GPU 硬件上運行的圖像識別競賽。


這顯示了商業(yè)可能性,谷歌收購了 Krizhevsky 的公司,投資開(kāi)始了。


哈里斯說(shuō):“在擴展這些東西方面進(jìn)行了大量投資?!?nbsp;投資初見(jiàn)成效?!霸谶^(guò)去的十年里,人工智能模型的復雜度經(jīng)歷了 3.6 個(gè)月的翻倍周期?!?/p>


問(wèn)題是,即使是便宜的通用硅也跟不上。而且,雖然可以在實(shí)驗室中為 AI 投入額外的時(shí)間和資源,但在將其部署到實(shí)際應用程序中時(shí),它需要快速的性能。


“人工智能的挑戰在于,你可以訓練非常大的模型,但如果你想部署它們并讓人們與它們互動(dòng),那么用戶(hù)提出查詢(xún)和獲得結果之間的時(shí)間非常重要,”哈里斯說(shuō)?!澳阈枰獙?shí)時(shí)反饋。該領(lǐng)域的最大挑戰是構建可以運行這些龐大神經(jīng)網(wǎng)絡(luò )的機器,以便您在幾毫秒內得到答案?!?/p>


圖片圖片

硅跟不上

圖片圖片


自 1965 年英特爾的戈登·摩爾 (Gordon Moore) 注意到這一趨勢以來(lái),幾十年來(lái)處理器性能每?jì)赡攴环?/p>


這很好,但這種進(jìn)步速度不足以跟上本世紀新興的人工智能,Harris 說(shuō):“即使你擁有電子產(chǎn)品的最佳案例擴展,你也沒(méi)有真正為它提供動(dòng)力?!?/p>


更糟糕的是,就在更聰明的人工智能到來(lái)的那一刻,硅加速的速度減慢了。


摩爾定律之所以成立,是因為芯片制造商可以每?jì)赡陮⒁粔K硅片上封裝的晶體管數量增加一倍?,F在,雖然處理器仍在封裝更多晶體管,但它們的運行溫度更高。


“我們遇到這個(gè)熱問(wèn)題的原因是 Dennard Scaling,”Harris 解釋道。羅伯特·丹納德 (Robert Dennard) 發(fā)明了 DRAM,并觀(guān)察到越小的晶體管消耗的能量越少,其面積越大:“大約在 2005 年,它壞了?!?/p>


今天的快速處理器使用 300W 和更高功率,而 Harris 說(shuō)這正朝著(zhù) 1kW 芯片發(fā)展。


“我們仍在每單位面積上獲得更多的晶體管。但是你不能真正使用它們,因為冷卻解決方案不支持你使用它們。芯片會(huì )燃燒。你需要能夠開(kāi)發(fā)出每瓦執行更多操作的芯片?!?/p>


圖片圖片

進(jìn)入光子學(xué)

圖片圖片


讓芯片變熱的是電阻。當電子在電流中流動(dòng)時(shí),電信號面臨阻力。相比之下,光信號不會(huì )面臨同樣的阻力,也不會(huì )產(chǎn)生熱量——而且光子的傳播速度也比其他任何東西都快。


多年來(lái),先進(jìn)的計算機設計一直試圖引入光子學(xué),并使用“電子進(jìn)行處理,光子進(jìn)行通信”,用 HPE 科學(xué)家 John Sontag 的話(huà)來(lái)說(shuō)(HPE 是 Lightmatter 的投資者)。


長(cháng)途通信使用光纖,這些光纖現在深入數據中心的機架?!坝行┕句N(xiāo)售 100 Gig 可插拔光學(xué)器件,而他們現在才剛剛部署 400 Gig 可插拔光學(xué)器件。他們通過(guò)光纖每秒發(fā)送 400 吉比特的數據,將空間上分離的機架和物品連接在一起?!?/p>


圖片


最近的發(fā)展允許晶體管和光子學(xué)在同一個(gè)晶圓上合并,即所謂的“共同封裝光學(xué)”。最初,這被視為一種減小這些光插頭尺寸和功耗的方法,將信號作為光帶入芯片,而不是在 CMOS 芯片的邊界將光信號轉換為電信號。


根據路線(xiàn)圖,“光學(xué)元件越來(lái)越接近硅,直到最終,光學(xué)元件與處理器和網(wǎng)絡(luò )芯片進(jìn)行 3D 堆疊和共同封裝,從而以低能耗提供非常高的數據速率?!?/p>


英特爾已經(jīng)展示了一年或更長(cháng)時(shí)間的聯(lián)合封裝光學(xué),Broadcom 已經(jīng)展示了聯(lián)合封裝的光學(xué)開(kāi)關(guān),Marvell 在 2021 年以 100 億美元收購了光電子公司 Inphi,但業(yè)界對它能否迅速發(fā)揮作用持懷疑態(tài)度。


Dell'Oro Group 分析師 Sameh Boujelbene 在今年對 SDxCentral 的評論中表示:“現在就制定可在未來(lái)幾年內進(jìn)行大規模部署和量產(chǎn)的聯(lián)合封裝光學(xué)解決方案還為時(shí)過(guò)早?!?/p>


Harris 評論說(shuō),共同封裝的光學(xué)器件可用于制造用于訓練 AI 的高度互連的 GPU 系統,但這仍然需要具有交錯光纖“rat’s nest”的計算集群。


“他們計劃使用光學(xué)器件將服務(wù)器內部的處理器連接在一起。當每個(gè)芯片都使用光纖連接到每個(gè)其他芯片時(shí),會(huì )有性能優(yōu)勢,但很難為這些東西提供服務(wù)?!?/p>


Lightmatter 的方法是將光學(xué)元件進(jìn)一步推入芯片內部,因此所有這些互連都由硅內的可切換光子網(wǎng)絡(luò )處理,該網(wǎng)絡(luò )不產(chǎn)生熱量,占用的體積極小。

“光纖是宏觀(guān)的,它在毫米的數量級,”他說(shuō)?!拔覀兊脑O備是兩微米?!?/p>


這可以大大減少所需的硬件,有效地將一個(gè)復雜的人工智能訓練系統集成到一個(gè)芯片上:“如果你打開(kāi)我們的服務(wù)器,里面只有一個(gè)芯片。它包含服務(wù)器的所有處理器。它們在芯片內部是光學(xué)互連的。他們也可以通過(guò)光學(xué)與其他平臺進(jìn)行通信?!?/p>


他繼續說(shuō)道:“最終,這個(gè)東西所做的是極端集成,使一切都可以通過(guò)光學(xué)互連實(shí)現,并允許真正荒謬的帶寬?!?/p>


它是在商業(yè)硅晶圓廠(chǎng)提供的標準流程中完成的:“我們使用 GlobalFoundries 制造晶圓,”Harris 說(shuō)?!拔覀兊木w管非常接近隔壁鄰居,距離光子元件不到 100 納米。都是一體的?!?/p>


他說(shuō),使用相同的蝕刻工具制造 CMOS 和光子連接,它們與晶體管處于相同的納米尺度。


“我們使用所有相同的蝕刻工具。所以都是完全標準的CMOS。我們使用‘絕緣體晶圓上的硅’,用于生產(chǎn)許多電子芯片?!?/p>


哈里斯和他的同事在麻省理工學(xué)院提出了這個(gè)想法,并在 1100 萬(wàn)美元的啟動(dòng)資金的幫助下,自 2018 年以來(lái)一直在將其商業(yè)化。


走向硅


公司有兩種產(chǎn)品。通道是一種互連,它采用傳統處理器陣列并將它們連接起來(lái),使用可編程的片上光網(wǎng)絡(luò )。


“激光器與調制器和晶體管一起集成到平臺中,”他說(shuō)?!叭绻阌脪呙桦娮语@微鏡觀(guān)察這個(gè)東西,你可以看到波導——它們相距約兩微米,寬幾百納米?!?/p>

另一個(gè)產(chǎn)品是 Envise,一種通用的云推理加速器,它將計算元素與光子計算核心結合在一起。


這里的承諾是解決人工智能處理速度的問(wèn)題:“我們的延遲提高了大約 42 倍,因為處理是以光速進(jìn)行的。當光穿過(guò)芯片時(shí),你正在做乘法和加法。

圖片


該技術(shù)仍處于早期階段,但哈里斯表示,Lightmatter 擁有“大約五個(gè)客戶(hù)”,都是大型企業(yè)。該公司在實(shí)驗室中擁有硅,并將于 2022 年晚些時(shí)候全面上市。


“在 Passage 案例中,我們正在研究芯片之間的通信,而在 Envise 方面,光學(xué)處理核心有助于提供通信能量,同時(shí)還可以卸載計算機操作,”Harris 說(shuō)。


哈里斯說(shuō),這些產(chǎn)品是“大芯片”。與另一家 AI 芯片初創(chuàng )公司 Cerebras 非常相似,Lightmatter 發(fā)現可以在單個(gè)晶圓上集成多個(gè)內核和網(wǎng)絡(luò )。


Cerebras 在商業(yè)上得到進(jìn)一步發(fā)展,其產(chǎn)品被愛(ài)丁堡大學(xué)的 EPCC 超級計算中心和生物制****公司 AbbVie 等采用。然而,它不得不創(chuàng )建自己的液體冷卻系統來(lái)處理片上網(wǎng)絡(luò )產(chǎn)生的熱量。


Lightmatter 的光網(wǎng)絡(luò )用光子發(fā)送信號并且運行溫度更低。它也更小一些,但仍然是“幾英寸寬”,通道適合一個(gè) 8 英寸乘 8 英寸的芯片插座:“這是我一生中見(jiàn)過(guò)的最大的芯片插座?!?/p>


然而,它確實(shí)提供了“荒謬”的帶寬:768Tbps。


晶圓尺寸的芯片聽(tīng)起來(lái)像是一種負擔,因為所有硅晶圓都可能存在小點(diǎn)缺陷,因此大晶圓出現故障的可能性更高?!拔覀冊诹悸使こ谭矫孀隽撕芏喙ぷ?,”哈里斯說(shuō)?!暗酒系木w管并不多?!?/p>


晶體管越少,出現點(diǎn)缺陷的可能性就越?。骸拔覀兊拿芏确浅5?,因此在制造過(guò)程中出現導致晶體管失效的點(diǎn)缺陷的可能性非常低。成品率最終很高,因為它不是一個(gè)非常密集的晶體管電路?!?/p>


應用


哈里斯說(shuō),這方面的第一個(gè)應用將是對實(shí)時(shí)視頻進(jìn)行分析的公司。這些可能包括安全公司,但也包括使用攝像頭監控生產(chǎn)線(xiàn)以發(fā)現零件何時(shí)存在缺陷的公司。


它還可能對語(yǔ)音分析和其他 AI 應用有用:“它是全面的?!?/p>


有一個(gè)共同因素——客戶(hù)對谷歌首創(chuàng )的“變形金剛”型神經(jīng)網(wǎng)絡(luò )感興趣,并希望以更低的成本實(shí)施它們

“第一個(gè)應用程序主要是試圖解決每次推理的美元成本。如果你是一名在谷歌云上工作的產(chǎn)品人員,有很多你想部署的 AI 模型,但你負擔不起,因為每次推理的成本沒(méi)有意義?!?/p>


這一切都會(huì )奏效嗎?一個(gè)積極的跡象是加入公司的工程師的才能。


Richard Ho 是谷歌定制 AI 芯片系列 Tensor Processing Unit (TPU) 的領(lǐng)導者之一,他于 8 月加入 LightMatter,之前是英特爾 AI 集團數據中心工程副總裁 Ritesh Jain。5 月,它聘請了 Apple 財務(wù)總監 Jessie Zhang 擔任財務(wù)副總裁。

光子計算的前景可能是光明的。


*博客內容為網(wǎng)友個(gè)人發(fā)布,僅代表博主個(gè)人觀(guān)點(diǎn),如有侵權請聯(lián)系工作人員刪除。



關(guān)鍵詞: 硅芯片

相關(guān)推薦

技術(shù)專(zhuān)區

關(guān)閉
国产精品自在自线亚洲|国产精品无圣光一区二区|国产日产欧洲无码视频|久久久一本精品99久久K精品66|欧美人与动牲交片免费播放
<dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><small id="yhprb"></small><dfn id="yhprb"></dfn><small id="yhprb"><delect id="yhprb"></delect></small><small id="yhprb"></small><small id="yhprb"></small> <delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"></dfn><dfn id="yhprb"></dfn><s id="yhprb"><noframes id="yhprb"><small id="yhprb"><dfn id="yhprb"></dfn></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><small id="yhprb"></small><dfn id="yhprb"><delect id="yhprb"></delect></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn> <small id="yhprb"></small><delect id="yhprb"><strike id="yhprb"></strike></delect><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn><dfn id="yhprb"><s id="yhprb"><strike id="yhprb"></strike></s></dfn><dfn id="yhprb"><s id="yhprb"></s></dfn>