WSNs中基于三因素節點(diǎn)評估的安全認證方案
(3)存儲花費
本文引用地址:http://dyxdggzs.com/article/276364.htmWatro等提出的方案需要存儲公/私密鑰和系統參數,Wong等和Das等提出的方案需要存儲系統參數,而本文提出的方案需要存儲節點(diǎn)的信任度和系統參數,所以它需要占用更多的存儲空間,圖1給出了四個(gè)方案的傳感器節點(diǎn)存儲需求的比較。然而,隨著(zhù)傳感器技術(shù)的不斷提高,傳感器節點(diǎn)的運算能力和存儲能力都會(huì )有較大提升。
(4)節點(diǎn)能量花費
節點(diǎn)能量花費包括計算花費和通信花費。在Watro等提出的方案中,節點(diǎn)需要進(jìn)行對用戶(hù)請求的回復、隨機數認證、檢驗和產(chǎn)生和確認以及兩個(gè)公鑰的運行。在Wong等提出的方案中,節點(diǎn)需要進(jìn)行表查詢(xún)、為產(chǎn)生參數而進(jìn)行的哈希函數運算以及等待網(wǎng)關(guān)節點(diǎn)對用戶(hù)請求的回復。在Das等提出的方案中,節點(diǎn)需要進(jìn)行對用戶(hù)請求的回復、時(shí)間戳認證以及為參數產(chǎn)生進(jìn)行哈希運算。而在本文提出的方案中,節點(diǎn)會(huì )進(jìn)行信任度計算、對用戶(hù)請求的回復和時(shí)間戳認證。此方案減少了哈希運算的能量花費,而且通過(guò)信任度計算,大大提高認證過(guò)程的安全性。
3.3 仿真實(shí)驗
為了評估這四種用戶(hù)認證方案的有效性,本文在NS2的仿真環(huán)境下驗證它們在有惡意節點(diǎn)的環(huán)境下用戶(hù)成功認證的概率。設置參數如下:用戶(hù)節點(diǎn)為15%,中繼服務(wù)器節點(diǎn)為5%,節點(diǎn)射頻通信距離為10,傳感器節點(diǎn)的最大、最小個(gè)數為100,網(wǎng)絡(luò )數目為400,執行數為100。注意,85%的節點(diǎn)是與用戶(hù)認證的傳感器節點(diǎn)。圖2給出了仿真結果。從圖中可以看出,相對于其他的三種用戶(hù)認證方案,本文所提出的用戶(hù)認證方案在有惡意節點(diǎn)的環(huán)境下仍保持了比較高的用戶(hù)成功認證概率。
4 結語(yǔ)
無(wú)線(xiàn)傳感器網(wǎng)絡(luò )的認證技術(shù)在安全方面還存在很多的不足,同時(shí)還面臨諸多的威脅。本文提出了一種無(wú)線(xiàn)傳感器網(wǎng)絡(luò )基于三因素節點(diǎn)評估的安全認證方案,它引入了時(shí)間片、安全行動(dòng)系數和交互頻度的輕量級的節點(diǎn)信任度計算方法,并與經(jīng)過(guò)優(yōu)化的認證方案相結合來(lái)進(jìn)行用戶(hù)認證。安全性分析、性能分析和仿真實(shí)驗的結果表明,該方案有效地提高了節點(diǎn)所提供信息的真實(shí)性和準確性,并且與之前的許多認證方案相比,它具有更高的安全性,很適合無(wú)線(xiàn)傳感器網(wǎng)絡(luò )。通過(guò)該方案,平衡了整個(gè)過(guò)程的能量消耗,從而更好地應對針對無(wú)線(xiàn)傳感器網(wǎng)絡(luò )的安全攻擊。未來(lái)的工作是進(jìn)一步地完善該認證方案的性能,使其能夠在無(wú)線(xiàn)傳感器網(wǎng)絡(luò )中得到廣泛地應用。
參考文獻:
[1]向亦宏, 朱燕民. 無(wú)線(xiàn)傳感器網(wǎng)絡(luò )中高效建立干擾模型的研究[J]. 計算機工程, 2014, 40(8): 1-5.
[2]Watro R, Kong D, Cuti S, et al. TinyPK: securing sensor networks with public key technology[C].Proceedings of the 2nd ACM workshop on Security of ad hoc and sensor networks. Washington,USA:ACM, 2004,59-64.
[3]Wong K H M, Zheng Yuan, Cao Jiannong, et al. A dynamic user authentication scheme for wireless sensor networks[C].Sensor Networks, Ubiquitous, and Trustworthy Computing.Taiwan: IEEE,2006,1-8.
[4]Das M L. Two-factor user authentication in wireless sensor networks[J]. Wireless Communications, IEEE Transactions on, 2009, 8(3): 1086-1090.
[5]Chen Tienho, Shih W K. A robust mutual authentication protocol for wireless sensor networks[J]. Etri Journal, 2010, 32(5): 704-712.
[6]Kumar P, Choudhury A J, Sain M, et al. RUASN: a robust user authentication framework for wireless sensor networks[J]. Sensors, 2011, 11(5): 5020-5046.
[7]Qi Aiqin, Shen Yongjun. An authentication protocol based on Chinese remainder theorem in wireless sensor networks[C].Conference Anthology, IEEE. Lanzhou,China:IEEE, 2013,1-3.
[8]馬力,鄭國寧,孫朋.節點(diǎn)信任度模型的算法研究設計[J].計算機科學(xué),2012, 39(B06): 81-85.
[9]Gu Chengjie, Zhang Shunyi, Feng Huibin, et al. A novel trust management model for P2P network with reputation and risk evaluation[C].E-Business and E-Government (ICEE).Nanjing,China:IEEE,2010,3544-3547.
[10]Wu Guowei, Du Zhuang, Hu Yibo, et al. A dynamic trust model exploiting the time slice in WSNs[J]. Soft Computing, 2014, 18(9): 1829-1840.
[11]Messerges T S, Dabbish E A, Sloan R H. Examining smart-card security under the threat of power analysis attacks[J]. Computers, IEEE Transactions on, 2002, 51(5): 541-552.
[12]Shah M D, Gala S N, Shekokar N M. Lightweight authentication protocol used in Wireless Sensor Network[C].Circuits, Systems, Communication and Information Technology Applications (CSCITA).Mumbai,India:IEEE,,2014:,138-143.
[13]Delgado-Mohatar O, Fúster-Sabater A, Sierra J M. A light-weight authentication scheme for wireless sensor networks[J].Ad Hoc Networks, 2011, 9(5): 727-735.
[14]Yu Yanli, Li Keqiu, Zhou Wanlei, et al. Trust mechanisms in wireless sensor networks: Attack analysis and countermeasures[J]. Journal of Network and Computer Applications,2012,35(3): 867-880.
[15]Lee C C, Hsu C W. A secure biometric-based remote user authentication with key agreement scheme using extended chaotic maps[J]. Nonlinear Dynamics, 2013, 71(1-2): 201-211.
評論