Windows CE API機制初探
文章屬性:原創(chuàng )
文章提交:san (san_at_xfocus.org)
Windows CE API機制初探
整理:san
創(chuàng )建:2005.07.06
更新:2005.07.07
--[ 目錄
1 - Windows CE架構
2 - 列出所有系統API
3 - Windows CE的系統調用
4 - coredll.dll對API的包裹
5 - 用系統調用實(shí)現shellcode
6 - 小結
7 - 感謝
8 - 參考資料
--[ 1 - Windows CE架構
在《Windows CE初探》一文中已經(jīng)介紹了KDataStruct的結構,這是一個(gè)非常重要的數據結構,可以從用戶(hù)態(tài)的應用程序訪(fǎng)問(wèn)。其開(kāi)始地址是固定的PUserKData(在SDK中定義:Windows CE Toolswce420POCKET PC 2003IncludeArmv4kfuncs.h),對于A(yíng)RM處理器是0xFFFFC800,而其它處理器是0x00005800。偏移KINFO_OFFSET是UserKInfo數組,里面保存了重要的系統數據,比如模塊鏈表、內核堆、APIset pointers表(SystemAPISets)?!禬indows CE初探》一文中通過(guò)模塊鏈表最終來(lái)搜索API在coredll中的地址,本文我們將討論一下UserKInfo[KINX_APISETS]處的APIset pointers表。
Windows CE的API機制使用了PSLs(protected server libraries),是一種客戶(hù)端/服務(wù)端模式。PSLs象DLL一樣處理導出服務(wù),服務(wù)的導出通過(guò)注冊APIset。
有兩種類(lèi)型的APIset,分別是固有的和基于句柄的。固有的API sets注冊在全局表SystemAPISets中,可以以API句柄索引和方法索引的組合來(lái)調用他們的方法?;诰浔腁PI和內核對象相關(guān),如文件、互斥體、事件等。這些API的方法可以用一個(gè)對象的句柄和方法索引來(lái)調用。
kfuncs.h中定義了固有APIset的句柄索引,如:SH_WIN32、SH_GDI、SH_WMGR等?;诰浔腁PI索引定義在PUBLICCOMMONOAKINCpsyscall.h中,如:HT_EVENT、HT_APISET、HT_SOCKET等。
SystemAPISets共有32個(gè)CINFO結構的APIset,通過(guò)遍歷SystemAPISets成員,可以列出系統所有API。其中CINFO的結構在PRIVATEWINCEOSCOREOSNKINCkernel.h中定義:
/**
* Data structures and functions for handle manipulations
*/
typedef struct cinfo {
char acName[4]; /* 00: object type ID string */
uchar disp; /* 04: type of dispatch */
uchar type; /* 05: api handle type */
ushort cMethods; /* 06: # of methods in dispatch table */
const PFNVOID *ppfnMethods;/* 08: ptr to array of methods (in server address space) */
const DWORD *pdwSig; /* 0C: ptr to array of method signatures */
PPROCESS pServer; /* 10: ptr to server process */
} CINFO; /* cinfo */
typedef CINFO *PCINFO;
--[ 2 - 列出所有系統API
Dmitri Leman在他的cespy中有個(gè)DumpApis函數,略加修改后如下:
/ DumpApis.cpp
/
#include "stdafx.h"
extern "C" DWORD __stdcall SetProcPermissions(DWORD);
#define KINFO_OFFSET 0x300
#define KINX_API_MASK 18
#define KINX_APISETS 24
#define UserKInfo ((long *)(PUserKData KINFO_OFFSET))
/pointer to struct Process declared in Kernel.h.
typedef void * PPROCESS;
/I will not bother redeclaring this large structure.
/I will only define offsets to 2 fields used in DumpApis():
#define PROCESS_NUM_OFFSET 0 /process number (index of the slot)
#define PROCESS_NAME_OFFSET 0x20 /pointer to the process name
/Also declare structure CINFO, which holds an information
/about an API (originally declared in
/PRIVATEWINCEOSCOREOSNKINCKernel.h).
typedef struct cinfo {
char acName[4]; /* 00: object type ID string */
uchar disp; /* 04: type of dispatch */
uchar type; /* 05: api handle type */
ushort cMethods; /* 06: # of methods in dispatch table */
const PFNVOID *ppfnMethods;/* 08: ptr to array of methods (in server address space) */
const DWORD *pdwSig; /* 0C: ptr to array of method signatures */
PPROCESS pServer; /* 10: ptr to server process */
} CINFO; /* cinfo */
#define NUM_SYSTEM_SETS 32
/*-------------------------------------------------------------------
FUNCTION: ProcessAddress
PURPOSE:
returns an address of memory slot for the given process index.
PARAMETERS:
BYTE p_byProcNum - process number (slot index) between 0 and 31
RETURNS:
Address of the memory slot.
-------------------------------------------------------------------*/
inline DWORD ProcessAddress(BYTE p_byProcNum)
{
return 0x02000000 * (p_byProcNum 1);
}
int WINAPI WinMain( HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPTSTR lpCmdLine,
int nCmdShow)
{
FILE *fp;
DWORD l_dwOldPermissions = 0;
if ( (fp = fopen("\apis.txt", "w")) == NULL )
{
return 1;
}
fprintf(fp, "Dump APIs:n");
__try
{
/Get access to memory slots of other processes
l_dwOldPermissions = SetProcPermissions(-1);
CINFO ** l_pSystemAPISets = (CINFO **)(UserKInfo[KINX_APISETS]);
for(int i = 0; i NUM_SYSTEM_SETS; i )
{
CINFO * l_pSet = l_pSystemAPISets[i];
if(!l_pSet)
{
continue;
}
LPBYTE l_pServer = (LPBYTE)l_pSet->pServer;
fprintf(fp,
"APIset: X acName: %.4s disp: %d type: %d cMethods: %d "
"ppfnMethods: X pdwSig: X pServer: X %lsn",
i,
l_pSet->acName,
l_pSet->disp,
l_pSet->type,
l_pSet->cMethods,
l_pSet->ppfnMethods,
l_pSet->pdwSig,
l_pServer,
l_pServer? (*(LPTSTR*)
(l_pServer PROCESS_NAME_OFFSET)) : _T("") );
/If this API is served by an application - get it's
/address, if it is served by the kernel - use address 0
DWORD l_dwBaseAddress = 0;
if(l_pServer)
{
l_dwBaseAddress = ProcessAddress
(*(l_pServer PROCESS_NUM_OFFSET));
}
/Add the base address to the method and signature
/tables pointers
PFNVOID * l_ppMethods = (PFNVOID *)l_pSet->ppfnMethods;
if(l_ppMethods (DWORD)l_ppMethods 0x2000000)
{
l_ppMethods = (PFNVOID *)
((DWORD)l_ppMethods l_dwBaseAddress);
}
DWORD * l_pdwMethodSignatures = (DWORD *)l_pSet->pdwSig;
if(l_pdwMethodSignatures
(DWORD)l_pdwMethodSignatures 0x2000000)
{
l_pdwMethodSignatures = (DWORD *)
((DWORD)l_pdwMethodSignatures l_dwBaseAddress);
}
if(l_ppMethods)
{
for(int j = 0; j l_pSet->cMethods; j )
{
PFNVOID l_pMethod = l_ppMethods?
l_ppMethods[j] : 0;
if(l_pMethod (DWORD)l_pMethod 0x2000000)
{
l_pMethod = (PFNVOID)
((DWORD)l_pMethod l_dwBaseAddress);
}
DWORD l_dwSign = l_pdwMethodSignatures?
l_pdwMethodSignatures[j] : 0;
fprintf(fp,
" meth #%3i: X sign Xn",
j,
l_pMethod,
l_dwSign);
}
}
}/for(int i = 0; i NUM_SYSTEM_SETS; i )
}
__except(1)
{
fprintf(fp, "Exception in DumpApisn");
}
if(l_dwOldPermissions)
{
SetProcPermissions(l_dwOldPermissions);
}
fclose(fp);
return 0;
}
來(lái)看一下此程序輸出的片斷:
APIset: 00 acName: Wn32 disp: 3 type: 0 cMethods: 185 ppfnMethods: 8004B138 pdwSig: 00000000 pServer: 00000000
meth # 0: 8006C83C sign 00000000
meth # 1: 8006C844 sign 00000000
meth # 2: 800804C4 sign 00000000
meth # 3: 8006BF20 sign 00000000
meth # 4: 8006BF94 sign 00000000
meth # 5: 8006BFEC sign 00000000
meth # 6: 8006C0A0 sign 00000000
meth # 7: 8008383C sign 00000000
meth # 8: 80068FC8 sign 00000000
meth # 9: 800694B0 sign 00000000
meth # 10: 8006968C sign 00000000
...
這是最開(kāi)始的一個(gè)APIset,它的ppfnMethods是0x8004B138,cMethods是185,根據這兩個(gè)數據得到185個(gè)地址,這些地址實(shí)際上就是內核系統調用的實(shí)現地址。它們的索引相對PRIVATEWINCEOSCOREOSNKKERNELkwin32.h里的Win32Methods數組:
const PFNVOID Win32Methods[] = {
(PFNVOID)SC_Nop,
(PFNVOID)SC_NotSupported,
(PFNVOID)SC_CreateAPISet, / 2
(PFNVOID)EXT_VirtualAlloc, / 3
(PFNVOID)EXT_VirtualFree, / 4
(PFNVOID)EXT_VirtualProtect, / 5
(PFNVOID)EXT_VirtualQuery, / 6
(PFNVOID)SC_VirtualCopy, / 7
(PFNVOID)SC_LoadLibraryW, / 8
(PFNVOID)SC_FreeLibrary, / 9
(PFNVOID)SC_GetProcAddressW, / 10
...
(PFNVOID)SC_InterruptMask, / 184
};
--[ 3 - Windows CE的系統調用
Windows CE沒(méi)有使用ARM處理器的SWI指令來(lái)實(shí)現系統調用,SWI指令在Windows CE里是空的,就簡(jiǎn)單的執行了"movs pc,lr"(詳見(jiàn)armtrap.s關(guān)于SWIHandler的實(shí)現)。Windows CE的系統調用使用了0xf0000000 - 0xf0010000的地址,當系統執行這些地址的時(shí)候將會(huì )觸發(fā)異常,產(chǎn)生一個(gè)PrefetchAbort的trap。在PrefetchAbort的實(shí)現里(詳見(jiàn)armtrap.s)首先會(huì )檢查異常地址是否在系統調用trap區,如果不是,那么執行ProcessPrefAbort,否則執行ObjectCall查找API地址來(lái)分派。
通過(guò)APIset和其API的索引可以算出系統調用地址,其公式是:0xf0010000-(256*apiset apinr)*4。比如對于SC_CreateAPISet的系統調用可以這樣算出來(lái):0xf0010000-(256*0 2)*4=0xF000FFF8。
--[ 4 - coredll.dll對API的包裹
選擇一個(gè)沒(méi)有參數的SetCleanRebootFlag()進(jìn)行分析,IDAPro對其的反匯編如下:
.text:01F74F70 EXPORT SetCleanRebootFlag
.text:01F74F70 SetCleanRebootFlag
.text:01F74F70 STMFD SP!, {R4,R5,LR}
.text:01F74F74 LDR R5, =0xFFFFC800
.text:01F74F78 LDR R4, =unk_1FC6760
.text:01F74F7C LDR R0, [R5] ; (2FF00-0x14) -> 1
.text:01F74F80 LDR R1, [R0,#-0x14]
.text:01F74F84 TST R1, #1
.text:01F74F88 LDRNE R0, [R4] ; 8004B138 ppfnMethods
.text:01F74F8C CMPNE R0, #0
.text:01F74F90 LDRNE R1, [R0,#0x134]
.text:01F74F94 LDREQ R1, =0xF000FECC
.text:01F74F98 MOV LR, PC
.text:01F74F9C MOV PC, R1 ; 80062AAC SC_SetCleanRebootFlag
.text:01F74FA0 LDR R3, [R5]
.text:01F74FA4 LDR R0, [R3,#-0x14]
.text:01F74FA8 TST R0, #1
.text:01F74FAC LDRNE R0, [R4] ; 8004B138 ppfnMethods
.text:01F74FB0 CMPNE R0, #0
.text:01F74FB4 LDRNE R0, [R0,#0x25C]
.text:01F74FB8 MOVNE LR, PC ; 800810EC SC_KillThreadIfNeeded
.text:01F74FBC MOVNE PC, R0
.text:01F74FC0 LDMFD SP!, {R4,R5,PC}
.text:01F74FC0 ; End of function SetCleanRebootFlag
寫(xiě)一個(gè)包含SetCleanRebootFlag()函數的小程序用EVC進(jìn)行跟蹤調試,按F11進(jìn)入該函數以后,程序首先取KDataStruct的lpvTls成員,然后取lpvTls偏移-0x14的內容,測試該內容是否是1。
得先來(lái)了解一下lpvTls偏移-0x14的數據是什么。先看PUBLICCOMMONOAKINCpkfuncs.h里的幾個(gè)定義:
#define CURTLSPTR_OFFSET 0x000
#define UTlsPtr() (*(LPDWORD *)(PUserKData CURTLSPTR_OFFSET))
#define PRETLS_THRDINFO -5 / current thread's information (bit fields, only bit 0 used for now)
#define UTLS_INKMODE 0x00000001 / bit 1 set if in kmode
看來(lái)lpvTls偏移-0x14保存的是當前線(xiàn)程信息,只有第0比特被使用。再來(lái)看PRIVATEWINCEOSCOREOSNKKERNELARMmdram.c里的MDCreateMainThread2函數:
...
if (kmode || bAllKMode) {
pTh->ctx.Psr = KERNEL_MODE;
KTHRDINFO (pTh) |= UTLS_INKMODE;
} else {
pTh->ctx.Psr = USER_MODE;
KTHRDINFO (pTh) = ~UTLS_INKMODE;
}
...
KTHRDINFO (pTh)在PRIVATEWINCEOSCOREOSNKINCkernel.h里定義:
#define KTHRDINFO(pth) ((pth)->tlsPtr[PRETLS_THRDINFO])
它就是lpvTls偏移-0x14。也就是說(shuō)系統在創(chuàng )建主線(xiàn)程的時(shí)候,根據程序當前的模式來(lái)設置KTHRDINFO的值,如果是內核模式,那么是1,否則是0。
回到coredll.dll中SetCleanRebootFlag的實(shí)現,這時(shí)可以知道判斷lpvTls偏移-0x14的內容是為了檢查當前是否內核模式。由于Pocket PC ROM編譯時(shí)使用了Enable Full Kernel Mode選項,所以程序都是以?xún)群四J竭\行。于是接著(zhù)調試時(shí)可以看到取0x1FC6760的內容,取出來(lái)后,R0的值時(shí)0x8004B138,這個(gè)值正好是DumpApis程序輸出的第一個(gè)APIset的ppfnMethods。接下來(lái)執行:
.text:01F74F90 LDRNE R1, [R0,#0x134]
.text:01F74F94 LDREQ R1, =0xF000FECC
由于程序是內核模式,所以前一條指令成功取出值,后一條無(wú)效。這時(shí)R1的值是0x80062AAC,和DumpApis程序輸出的一個(gè)地址匹配,根據索引,發(fā)現這個(gè)地址是SC_SetCleanRebootFlag在內核中的實(shí)現。其實(shí)索引也可以根據這條指令的偏移來(lái)?。?x134/4=0x4D(77),根據kwin32.h里Win32Methods的索引直接就對應出SC_SetCleanRebootFlag。內核模式的話(huà),后面還會(huì )執行SC_KillThreadIfNeeded。
如果是用戶(hù)模式的話(huà),系統會(huì )執行0xF000FECC這個(gè)地址,這顯然是一個(gè)系統調用trap地址。根據上面的公式算出索引值:(0xf0010000-0xF000FECC)/4=0x4D(77),根據kwin32.h里Win32Methods的索引也對應出這是SC_SetCleanRebootFlag。
通過(guò)分析coredll.dll對API包裹的實(shí)現,可以發(fā)現Windows CE在調用一部分API的時(shí)候會(huì )先判斷程序是否處于內核模式,如果是,那么不用系統調用方式,直接奔內核實(shí)現地址去了,否則就老老實(shí)實(shí)的用系統調用地址。
--[ 5 - 用系統調用實(shí)現shellcode
系統調用地址相對固定,可以通過(guò)索引算出它的trap地址,而且搜索coredll.dll里API地址的方法在用戶(hù)態(tài)是無(wú)法實(shí)現的,因為模塊鏈表是在內核空間,用戶(hù)態(tài)無(wú)法訪(fǎng)問(wèn)。下面就是用系統調用實(shí)現的簡(jiǎn)單shellcode,它的作用是軟重啟系統,我想對于smartphone的系統應該也是可用(smartphone的ROM在編譯時(shí)沒(méi)有用Enable Full Kernel Mode選項)。
#include "stdafx.h"
int shellcode[] =
{
0xE59F0014, / ldr r0, [pc, #20]
0xE59F4014, / ldr r4, [pc, #20]
0xE3A01000, / mov r1, #0
0xE3A02000, / mov r2, #0
0xE3A03000, / mov r3, #0
0xE1A0E00F, / mov lr, pc
0xE1A0F004, / mov pc, r4
0x0101003C, / IOCTL_HAL_REBOOT
0xF000FE74, / trap address of KernelIoControl
};
int WINAPI WinMain( HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPTSTR lpCmdLine,
int nCmdShow)
{
((void (*)(void)) shellcode)();
return 0;
}
--[ 6 - 小結
通過(guò)本文可以了解到Windows CE API機制的大概輪廓,對于系統調用的具體流程,也就是trap后的具體流程還不是很清晰,本文也就一塊破磚頭,希望能砸到幾個(gè)人,可以一起討論;)
文中如有錯誤還望不吝賜教,希望Xcon'05見(jiàn)。
--[ 7 - 感謝
非常感謝Nasiry對我的幫助,在他的幫助下才得以完成此文。
--[ 8 - 參考資料
[1] Spy: A Windows CE API Interceptor by Dmitri Leman
Dr. Dobb's Journal October 2003
[2] misc notes on the xda and windows ce
http:/www.xs4all.nl/~itsme/projects/xda/
[3] windowsCE異常和中斷服務(wù)程序初探 by Nasiry
http:/www.cnblogs.com/nasiry/archive/2004/12/27/82476.html
http:/www.cnblogs.com/nasiry/archive/2005/01/06/87381.html
[4] Windows CE 4.2 Source Code
linux操作系統文章專(zhuān)題:linux操作系統詳解(linux不再難懂)
評論